3.20.13 Problems 1201 to 1300

Table 3.753: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





6328

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]





6329

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]





6330

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]





6331

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]





6337

\[ {}y^{\prime \prime }+y = 0 \]





6338

\[ {}y^{\prime \prime }-y = 0 \]





6348

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]





6349

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]





6350

\[ {}y^{\prime \prime \prime }-y = 0 \]





6351

\[ {}y^{\prime \prime \prime }+y = 0 \]





6352

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]





6353

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]





6354

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]





6355

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]





6356

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]





6357

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]





6358

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]





6359

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]





6360

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]





6361

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]





6362

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]





6363

\[ {}y^{\prime \prime \prime \prime } = 0 \]





6364

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]





6365

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]





6366

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]





6371

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]





6372

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]





6373

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]





6374

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]





6375

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]





6376

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]





6377

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]





6378

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]





6379

\[ {}y^{\prime \prime }+9 y = 0 \]





6380

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]





6381

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]





6382

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]





6383

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]





6384

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]





6385

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]





6386

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]





6387

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]





6388

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]





6389

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]





6390

\[ {}y^{\prime \prime }+2 y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x \]





6391

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]





6392

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]





6394

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]





6395

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]





6396

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]





6397

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]





6398

\[ {}y^{\prime \prime }+y^{\prime } = \frac {-1+x}{x} \]





6400

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]





6402

\[ {}y^{\prime \prime } = -3 y \]





6499

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]





6500

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]





6501

\[ {}y^{\prime \prime }-y = t^{2} \]





6505

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]





6506

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{\pi -t} \]





6507

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]





6508

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]





6509

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]





6510

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]





6511

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]





6512

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]





6513

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0





6551

\[ {}y^{\prime \prime }+y = 0 \]





6553

\[ {}y^{\prime \prime }-y = 0 \]





6555

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]





6557

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]





6639

\[ {}y^{\prime \prime }+y = 0 \]





6660

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]





6661

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]





6662

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]





6663

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]





6664

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]





6665

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]





6667

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





6670

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





6671

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]





6672

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]





6673

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]





6674

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]





6675

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]





6676

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]





6677

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]





6678

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





6679

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]





6683

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





6684

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]





6685

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right ) \]





6686

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





6687

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]





6690

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]





6691

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]





6692

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





6693

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]





6696

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]





6699

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]





6700

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]