3.20.17 Problems 1601 to 1700

Table 3.761: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

11766

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11767

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

11768

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

11769

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

11770

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

11771

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

11772

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

11773

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11774

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

11775

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

11776

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

11777

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

11778

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

11779

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

11780

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

11781

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

11782

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 \,{\mathrm e}^{-2 x} x \]

11783

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

11784

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 \,{\mathrm e}^{-2 x} x \]

11785

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

11786

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

11787

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

11788

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

11789

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

11790

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

11791

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

11792

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

11793

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

11794

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 \,{\mathrm e}^{x} x^{2}-7 \,{\mathrm e}^{x} \]

11795

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

11796

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

11797

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

11798

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

11799

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

11800

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]

11801

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 \,{\mathrm e}^{2 x} x \]

11802

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]

11803

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]

11804

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]

11805

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]

11806

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]

11807

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]

11808

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]

11809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} x +6 \,{\mathrm e}^{x} \]

11810

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{x} x^{2} \]

11811

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

11812

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

11813

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]

11814

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]

11815

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

11816

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

11817

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

11818

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

11819

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

11820

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = {\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x} x +5 x^{2} \]

11821

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} x +x^{2} {\mathrm e}^{3 x} \]

11822

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

11823

\[ {}y^{\prime \prime \prime \prime }-16 y = \sin \left (2 x \right ) x^{2}+x^{4} {\mathrm e}^{2 x} \]

11824

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+\sin \left (2 x \right ) {\mathrm e}^{-x} \]

11825

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \]

11826

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

11827

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

11828

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

11829

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

11830

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

11831

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

11832

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

11833

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

11834

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

11835

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

11836

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

11837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

11838

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

11839

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

11840

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

11841

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

11842

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

11843

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

11844

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

11845

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

11846

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

11854

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

12014

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

12015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12016

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

12017

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

12018

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]

12019

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]

12020

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

12021

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

12022

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12023

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

12024

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

12025

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

12026

\[ {}y^{\prime \prime }-4 y = 0 \]

12027

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

12028

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]

12029

\[ {}x^{\prime \prime }-4 x = t^{2} \]

12030

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

12031

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]