3.24.3 Problems 201 to 300

Table 3.811: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

2258

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

2259

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

2260

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

2261

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (-1+x \right ) \ln \left (x \right ) \]

2262

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

2263

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

2264

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

2265

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

2276

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

2277

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

2278

\[ {}x y^{\prime \prime } = x^{2}+1 \]

2279

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

2280

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

2281

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

2282

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

2283

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

2284

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

2285

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

2286

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

2287

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

2288

\[ {}y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

2289

\[ {}y^{\prime \prime } = y y^{\prime } \]

2290

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

2291

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

2292

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

2293

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

2294

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

2296

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

2297

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

2298

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

2299

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

2300

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

2302

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

2303

\[ {}y^{\prime \prime } = y^{3} \]

2304

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

2305

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

2306

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

2307

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

2308

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

2309

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

2310

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

2312

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

2313

\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

2512

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

2521

\[ {}\frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

2522

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

2523

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

2524

\[ {}\left (-2+x \right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

2527

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

2528

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \]

2529

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

2594

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

2595

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

2596

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

2597

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

2598

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

2604

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

2605

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

2620

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

2621

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

2660

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

2736

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

2737

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

2738

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

2739

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime } = 0 \]

2802

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

2803

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

2804

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right ) \]

2805

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2} \]

2806

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

2807

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

2808

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

2809

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

2810

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

2811

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]

2812

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

2813

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

2814

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

2815

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

2816

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

2817

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

2819

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

2820

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4} \]

2823

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

2834

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

4646

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4647

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

4648

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

4649

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

4650

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

4651

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

4652

\[ {}y^{3} y^{\prime \prime } = k \]

4653

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

4654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

4655

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

4656

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4657

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

4658

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

4659

\[ {}y^{\prime \prime } = 2 k y^{3} \]

4660

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]