3.24.4 Problems 301 to 400

Table 3.813: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

4661

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

4662

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

4663

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

4664

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

4665

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

4666

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4667

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

4668

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

4669

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

4670

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

4671

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

4672

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

4673

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

4674

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \]

4682

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4686

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

4732

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{\frac {2}{3}}} = 0 \]

4733

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4734

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4735

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

4736

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

4737

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

4738

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

4739

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

4740

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

4741

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

4742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

4743

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

4744

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

4745

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

4746

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4747

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

4839

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4840

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4841

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4842

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4843

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

4844

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

4845

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

4846

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

4847

\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{\frac {3}{2}}} \]

4848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

4849

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4850

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

4851

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

4852

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

4853

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

4854

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

4855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 x^{2} \ln \left (x \right ) \]

4856

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

4857

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

4858

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

4859

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4860

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

4861

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

4862

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

4863

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+y = 0 \]

4871

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4875

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

4887

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

4891

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]

4905

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

4907

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

4909

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4911

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

5064

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

5065

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

5066

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

5067

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

5068

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

5069

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

5070

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

5071

\[ {}x \left (-1+x \right )^{2} y^{\prime \prime }-2 y = 0 \]

5074

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

5189

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

5197

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

5198

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = x^{3} {\mathrm e}^{x} \]

5231

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5352

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

5353

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

5354

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

5355

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

5356

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

5357

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

5406

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +x^{2} \ln \left (x \right ) \]

5407

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

5408

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

5409

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

5410

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = \ln \left (1+x \right )^{2}+x -1 \]

5411

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

5412

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]

5413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2 \]

5414

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8 \]

5415

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (2+x \right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

5416

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

5417

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

5418

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

5419

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

5420

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

5421

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1+x}{x} \]