3.24.6 Problems 501 to 600

Table 3.817: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

6242

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6243

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

6244

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

6245

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6246

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6247

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6248

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

6265

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6266

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

6267

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

6268

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

6293

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

6294

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

6295

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6296

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

6297

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6298

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6299

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

6300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

6332

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

6333

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y = x \left (1+x \right )^{2} \]

6334

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

6335

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

6336

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

6339

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

6340

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6342

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6343

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-1+x}+\frac {y}{-1+x} = 0 \]

6344

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6345

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

6346

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

6347

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

6367

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

6368

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6369

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6370

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

6393

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

6399

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6403

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6619

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

6620

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6621

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

6622

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

6623

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

6624

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

6625

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

6626

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

6627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

6628

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

6629

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

6630

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

6631

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

6632

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

6633

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

6634

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

6635

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

6636

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

6637

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

6638

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

6640

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6641

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

6642

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

6694

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]

6695

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]

6821

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

6822

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6823

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6824

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6825

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6826

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6828

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

6829

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

6830

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6834

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6841

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6846

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6850

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

6855

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]