3.24.5 Problems 401 to 500

Table 3.815: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

5422

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

5423

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+\cos \left (x \right ) y = x \]

5424

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = 2+x \]

5425

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \]

5426

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \]

5427

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

5428

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x} \]

5429

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

5430

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \]

5431

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

5433

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

5434

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

5435

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

5436

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

5437

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0 \]

5438

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

5439

\[ {}\left (2 y+x \right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

5440

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

5441

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

5442

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

5443

\[ {}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

5811

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

5812

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5813

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

5814

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

5815

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

5816

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5817

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

5818

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \]

5819

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

5820

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

5821

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5822

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

5823

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5824

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5825

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

5826

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y = x +\frac {1}{x} \]

5827

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = x^{2}-1 \]

5828

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

5829

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

5830

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

5831

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

5832

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

5833

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

5855

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

5856

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

5857

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

5858

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

5859

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

5860

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

5864

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

5865

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

5867

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

5874

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

5877

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

5878

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

5883

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

5885

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

5889

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

5890

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

5891

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

5897

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

6006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

6008

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

6009

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6010

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6011

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6012

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

6013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6014

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6015

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

6016

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

6017

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6018

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6027

\[ {}y^{\prime \prime \prime }-x y = 0 \]

6029

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

6030

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

6031

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6032

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6033

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6034

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

6035

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6036

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

6037

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

6038

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

6039

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

6092

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

6093

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

6095

\[ {}y^{\prime \prime } = y y^{\prime } \]

6096

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

6097

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6098

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

6099

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6100

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6156

\[ {}y^{\prime } y^{\prime \prime } = x \left (1+x \right ) \]

6237

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6238

\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

6240

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

6241

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]