3.24.18 Problems 1701 to 1800

Table 3.841: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

9431

\[ {}x y^{\prime \prime }+2 y^{\prime }+a x y = 0 \]

9432

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0 \]

9433

\[ {}x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

9434

\[ {}x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

9435

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

9436

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

9437

\[ {}x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y = 0 \]

9438

\[ {}x y^{\prime \prime }+\left (x +a +b \right ) y^{\prime }+a y = 0 \]

9439

\[ {}x y^{\prime \prime }-x y^{\prime }-y-x \left (1+x \right ) {\mathrm e}^{x} = 0 \]

9440

\[ {}x y^{\prime \prime }-x y^{\prime }-a y = 0 \]

9441

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

9442

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }-2 \left (-1+x \right ) y = 0 \]

9443

\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

9444

\[ {}x y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }-y = 0 \]

9445

\[ {}x y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y = 0 \]

9446

\[ {}x y^{\prime \prime }+\left (a x +b +n \right ) y^{\prime }+n a y = 0 \]

9447

\[ {}x y^{\prime \prime }-\left (a +b \right ) \left (1+x \right ) y^{\prime }+a b x y = 0 \]

9448

\[ {}x y^{\prime \prime }+\left (x \left (a +b \right )+m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

9449

\[ {}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (x \,a^{2}+2 a b \right ) y = 0 \]

9450

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

9451

\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

9452

\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

9453

\[ {}x y^{\prime \prime }-\left (2 x^{2} a +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

9454

\[ {}x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \]

9455

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

9456

\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

9457

\[ {}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

9458

\[ {}x y^{\prime \prime }+\left (x f \left (x \right )+2\right ) y^{\prime }+f \left (x \right ) y = 0 \]

9459

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

9460

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

9461

\[ {}2 x y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+a y = 0 \]

9462

\[ {}2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \]

9463

\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \]

9464

\[ {}4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \]

9465

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

9466

\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (2+x \right ) y = 0 \]

9467

\[ {}4 x y^{\prime \prime }+4 y-\left (2+x \right ) y+l y = 0 \]

9468

\[ {}4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \]

9469

\[ {}16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \]

9470

\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

9471

\[ {}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \]

9472

\[ {}5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{\frac {1}{5}} y = 0 \]

9473

\[ {}2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \]

9474

\[ {}2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \]

9475

\[ {}\left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0 \]

9476

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

9477

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

9478

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

9479

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

9480

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

9481

\[ {}x^{2} y^{\prime \prime }-\left (x^{2} a +2\right ) y = 0 \]

9482

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a^{2}-6\right ) y = 0 \]

9483

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a -v \left (v -1\right )\right ) y = 0 \]

9484

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0 \]

9485

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

9486

\[ {}x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

9487

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

9488

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

9489

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-x^{2} a = 0 \]

9490

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \]

9491

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \]

9492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \]

9493

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

9494

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \]

9495

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

9496

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

9497

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \]

9498

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

9499

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \]

9500

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2} a +b \right ) y = 0 \]

9501

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \]

9502

\[ {}x^{2} y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }+a y = 0 \]

9503

\[ {}x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \]

9504

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

9505

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (x^{2} a +12 a +4\right ) \cos \left (x \right ) = 0 \]

9506

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

9507

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

9508

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

9509

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2} a^{2}+2\right ) y = 0 \]

9510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

9511

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

9512

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

9513

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

9514

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

9515

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \]

9516

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \left (x \right ) x^{3} = 0 \]

9517

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

9518

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

9519

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

9520

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0 \]

9521

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

9522

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

9523

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

9524

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

9525

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }-y = 0 \]

9526

\[ {}x^{2} y^{\prime \prime }-x \left (-1+x \right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

9527

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0 \]

9528

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0 \]

9529

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \]

9530

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y = 0 \]