3.24.29 Problems 2801 to 2900

Table 3.863: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

11494

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

11496

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

11497

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

11499

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

11500

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

11573

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

11581

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

11592

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

11715

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

11718

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11719

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11722

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

11723

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

11724

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0 \]

11725

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11726

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

11727

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

11728

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

11847

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

11848

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

11849

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (2+x \right )^{2} \]

11850

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = x^{3} \]

11851

\[ {}x \left (-2+x \right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (-1+x \right ) y = 3 x^{2} \left (-2+x \right )^{2} {\mathrm e}^{x} \]

11852

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

11853

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

11855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

11856

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11857

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

11858

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

11859

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

11860

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

11861

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

11862

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

11863

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

11864

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

11865

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

11866

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

11867

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

11868

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

11869

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11870

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

11871

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

11872

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

11873

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

11874

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

11875

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

11876

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

11877

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

11878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

11879

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

11880

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11881

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

11882

\[ {}\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y = 0 \]

11883

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

12048

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

12049

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12050

\[ {}\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

12051

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

12052

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

12053

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

12057

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

12059

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

12060

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12061

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

12062

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]

12063

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]

12064

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]

12065

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

12066

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

12067

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

12068

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]

12069

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

12168

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

12170

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

12172

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

12173

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

12175

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

12179

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

12180

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

12181

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

12183

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

12184

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

12185

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

12190

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

12191

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

12192

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

12195

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

12196

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

12200

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

12203

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

12204

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

12206

\[ {}y^{\prime \prime } = 2 y^{3} \]

12207

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

12222

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

12223

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

12224

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

12226

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

12227

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

12229

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

12234

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]