3.24.30 Problems 2901 to 3000

Table 3.865: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

12236

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

12238

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

12240

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

12241

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

12242

\[ {}y y^{\prime \prime } = 1 \]

12243

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

12248

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

12249

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]

12250

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (-1+x \right ) y^{\prime }+y = 0 \]

12251

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

12252

\[ {}y^{\prime \prime } \sin \left (x \right )+x y^{\prime }+7 y = 1 \]

12253

\[ {}y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

12254

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12255

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

12256

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

12257

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

12258

\[ {}x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

12259

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

12260

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

12261

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

12262

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

12263

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

12264

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

12265

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

12266

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = \cos \left (x \right ) \]

12267

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

12268

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

12269

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

12270

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

12271

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

12272

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

12273

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

12274

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

12275

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

12276

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

12277

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (2+x \right ) y}{x^{2} \left (1+x \right )} = 0 \]

12278

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

12279

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

12280

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 \cos \left (x \right ) y = 0 \]

12281

\[ {}y^{\prime \prime }+\frac {\left (-1+x \right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

12282

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

12351

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

12352

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

12353

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

12354

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

12355

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

12394

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12395

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

12398

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

12400

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

12401

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

12410

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

12411

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

12412

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]

12416

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

12417

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

12422

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

12424

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

12425

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

12490

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

12491

\[ {}x y^{\prime \prime \prime } = 2 \]

12493

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

12494

\[ {}x y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} x^{2} \]

12495

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]

12496

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

12497

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

12498

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

12499

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

12500

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

12539

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

12568

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

12569

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

12570

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

12571

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

12572

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

12574

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12576

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

12578

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

12584

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

12592

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

12593

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

12608

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

12609

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12610

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12611

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12612

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12613

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12614

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12745

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

12746

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

12747

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

12748

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

12749

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

12752

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12753

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

12756

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

12759

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

13249

\[ {}x^{2} y^{\prime \prime } = 1 \]

13250

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]