3.24.34 Problems 3301 to 3380

Table 3.873: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

15204

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

15206

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

15207

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15208

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

15209

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

15210

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15211

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

15212

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

15213

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

15214

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

15215

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15216

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15217

\[ {}y^{3} y^{\prime \prime } = -1 \]

15218

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

15219

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

15220

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

15221

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]

15387

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15388

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15389

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

15390

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15391

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y = 0 \]

15392

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

15393

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

15394

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

15395

\[ {}\left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

15396

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

15397

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

15398

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

15399

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

15400

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

15401

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

15402

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

15403

\[ {}\left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

15404

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-3 \left (-2+x \right ) y^{\prime }+4 y = x \]

15405

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (-2+4 x \right ) y^{\prime }-8 y = 0 \]

15406

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

15407

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (1+x \right ) y^{\prime }+6 y = 6 \]

15408

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

15409

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

15410

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

15411

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

15412

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

15413

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = \left (-1+x \right )^{2} {\mathrm e}^{x} \]

15414

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

15415

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (-1+x \right )^{2}}{x} \]

15416

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{2 x} x -1 \]

15417

\[ {}x \left (-1+x \right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

15427

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

15428

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

15429

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

15430

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

15431

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

15432

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]

15433

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}} \]

15434

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

15435

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (-1+x \right )^{2} {\mathrm e}^{x} \]

15436

\[ {}2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

15437

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

15438

\[ {}x^{3} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

15439

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]

15443

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

15444

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

15445

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

15446

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

15447

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

15448

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

15449

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

15454

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

15465

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15466

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

15467

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

15486

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

15487

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

15488

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

15489

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

15490

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

15491

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

15492

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

15493

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]