3.26.20 Problems 1901 to 2000

Table 3.927: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

12262

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

12264

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

12265

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

12275

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

12276

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

12277

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (2+x \right ) y}{x^{2} \left (1+x \right )} = 0 \]

12278

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

12280

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 \cos \left (x \right ) y = 0 \]

12394

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

12395

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

12400

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

12401

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

12410

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

12411

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

12412

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]

12416

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

12424

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

12425

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

12574

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12576

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

12578

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

12584

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

12591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

12592

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

12593

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

12609

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12610

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12611

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12612

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12613

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12614

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

12752

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12756

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13252

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

13474

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

13477

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

13478

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

13508

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

13527

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

13528

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

13538

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

13539

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13540

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13541

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

13542

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

13543

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

13545

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

13546

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

13547

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13549

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13564

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13565

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13566

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13567

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13568

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

13569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13570

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13643

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

13644

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

13645

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

13646

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13647

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

13648

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

13649

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13650

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

13651

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

13652

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

13653

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

13654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13655

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13656

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

13657

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

13658

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

13659

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

13660

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

13661

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13662

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13663

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

13664

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13665

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

13666

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13801

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

13804

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

13809

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

13810

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

13812

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

13815

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

13817

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

13820

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

13822

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

13823

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13827

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

13862

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]

14049

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

14064

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

14065

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

14090

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

14091

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

14110

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]