3.26.21 Problems 2001 to 2082

Table 3.929: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

14111

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

14122

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

14447

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

14451

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

14452

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

14457

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

14464

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

14465

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

14466

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

14467

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

14469

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

14470

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

14471

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

14472

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14473

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14508

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

14509

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

14628

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

14630

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

14632

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

14710

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

14711

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14712

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

14713

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14714

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

14715

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

14716

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

14717

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

14718

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

14719

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

14720

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

14721

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

14740

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14741

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

14742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14743

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

14752

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

14753

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14754

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14759

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14761

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

14763

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14764

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

14765

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14766

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

14768

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14769

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

14776

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

14831

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

14832

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

14873

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

14876

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

14877

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

14878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14879

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14880

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

14881

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

14882

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

15190

\[ {}x y^{\prime \prime } = y^{\prime } \]

15191

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15192

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

15194

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

15387

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15388

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15389

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

15390

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15391

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y = 0 \]

15392

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

15405

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (-2+4 x \right ) y^{\prime }-8 y = 0 \]

15406

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

15408

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

15409

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

15410

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

15465

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15486

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

15487

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

15488

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

15489

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

15490

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

15491

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

15492

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

15493

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]