3.27.9 Problems 801 to 900

Table 3.947: Second order, Linear, non-homogeneous and constant coefficients




#

ODE

Mathematica

Maple





11841

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]





11842

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]





11843

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]





11844

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]





11845

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]





11846

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]





12029

\[ {}x^{\prime \prime }-4 x = t^{2} \]





12030

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]





12031

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]





12032

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]





12033

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]





12034

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]





12035

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]





12036

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]





12037

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]





12038

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]





12039

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]





12040

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]





12041

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]





12042

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]





12043

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]





12054

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]





12055

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]





12056

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]





12058

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]





12164

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]





12165

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]





12167

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]





12169

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]





12171

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]





12182

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]





12186

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]





12187

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]





12189

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \cos \left (x \right ) x \]





12198

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]





12199

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]





12205

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]





12237

\[ {}y^{\prime \prime } = x^{2}+y \]





12309

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]





12310

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]





12311

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]





12312

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]





12313

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]





12314

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]





12315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]





12316

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]





12318

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]





12319

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]





12320

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]





12322

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]





12325

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]





12326

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right ) \]





12327

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12328

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )\right ) \]





12329

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]





12330

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]





12331

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12332

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]





12333

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]





12334

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12335

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12336

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]





12337

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]





12338

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \]





12339

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (-1+t \right ) \]





12340

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]





12341

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (-1+t \right ) \]





12342

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (-1+t \right ) \]





12343

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (-1+t \right ) \]





12356

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]





12357

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]





12358

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]





12360

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]





12396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{\frac {3}{2}} {\mathrm e}^{x} \]





12397

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]





12399

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]





12423

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]





12518

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]





12519

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]





12520

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]





12521

\[ {}y^{\prime \prime }-y = 5 x +2 \]





12522

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]





12523

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]





12524

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]





12525

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]





12526

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = \cos \left (x \right ) {\mathrm e}^{-x} \]





12527

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]





12532

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]





12533

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]





12534

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





12535

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{\frac {3}{2}}} \]





12542

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





12545

\[ {}y^{\prime \prime }-4 y = \sin \left (2 x \right ) {\mathrm e}^{2 x} \]





12744

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]





12757

\[ {}y^{\prime \prime }-4 y = 31 \]





12758

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]





12788

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]





12789

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]





12790

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]





12794

\[ {}y^{\prime \prime }-9 y = 2+x \]