# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x = t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = \frac {1}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \cos \left (x \right ) x \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \] |
✗ |
✓ |
|
\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x^{2}+y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{\frac {3}{2}} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \] |
✓ |
✓ |
|
\[ {}s^{\prime \prime }-a^{2} s = t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 5 x +2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = \cos \left (x \right ) {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{\frac {3}{2}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = \sin \left (2 x \right ) {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 31 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 27 x +18 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 2+x \] |
✓ |
✓ |
|
|
|||
|
|||