3.27.11 Problems 1001 to 1100

Table 3.951: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

13262

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

13263

\[ {}y^{\prime \prime }-3 = x \]

13476

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

13485

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

13487

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

13505

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

13510

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

13533

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

13550

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

13551

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

13675

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13676

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13677

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13678

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13679

\[ {}y^{\prime \prime }-9 y = 36 \]

13680

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

13681

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

13682

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

13685

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

13686

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

13687

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

13688

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

13696

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

13697

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

13698

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

13699

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

13700

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]

13701

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

13702

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

13703

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

13704

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

13705

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]

13706

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

13707

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

13708

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

13709

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

13710

\[ {}y^{\prime \prime }+9 y = x^{3} \]

13711

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

13712

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13713

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

13714

\[ {}y^{\prime \prime } = 6 \,{\mathrm e}^{x} \sin \left (x \right ) x \]

13715

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

13716

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

13717

\[ {}y^{\prime \prime }+9 y = 39 \,{\mathrm e}^{2 x} x \]

13718

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

13719

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

13720

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

13721

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

13722

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

13723

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

13724

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

13725

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

13726

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

13727

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

13728

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

13729

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13730

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) {\mathrm e}^{-x} \]

13731

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

13732

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

13733

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

13734

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13735

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

13736

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

13737

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

13738

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

13739

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

13740

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

13741

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

13742

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

13743

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

13744

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

13745

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

13746

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

13747

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

13748

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

13749

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

13750

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

13765

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

13766

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

13767

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

13768

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

13778

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

13779

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

13780

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

13781

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

13782

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

13792

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]

13825

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

13829

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

13830

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

13831

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

13832

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

13834

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

13835

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

13837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

13839

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

13843

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

13844

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 \sin \left (3 x \right ) x \]

13852

\[ {}y^{\prime \prime }-4 y = t^{3} \]

13853

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]