# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 27 t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1 |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \delta \left (-1+t \right )-\delta \left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = t \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 2 t -4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 3 t^{4}-2 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \] |
✓ |
✓ |
|
\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \] |
✓ |
✓ |
|
\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 32 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \] |
✓ |
✓ |
|
|
|||
|
|||