# |
ODE |
Mathematica |
Maple |
\[ {}x^{\prime \prime }-x^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = t \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \] |
✓ |
✓ |
|