3.27.14 Problems 1301 to 1400

Table 3.957: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

15280

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

15281

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

15282

\[ {}y^{\prime \prime }+9 y = 9 \]

15288

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

15289

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

15290

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

15291

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

15292

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

15293

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

15294

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

15295

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

15296

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

15297

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

15298

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

15299

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

15300

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

15301

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

15302

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

15303

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

15304

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \left (\cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

15305

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \cos \left (x \right ) {\mathrm e}^{-2 x} \]

15306

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

15307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

15308

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

15309

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

15312

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

15314

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

15315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

15319

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

15320

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

15321

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

15322

\[ {}y^{\prime \prime }-y = \sin \left (x \right )+x \]

15323

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

15326

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

15327

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

15328

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

15329

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

15330

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

15331

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

15332

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

15333

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

15334

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

15336

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

15338

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

15339

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

15340

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

15341

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

15342

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

15343

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

15344

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

15345

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

15346

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

15347

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

15349

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

15350

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

15351

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

15352

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

15354

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

15359

\[ {}y^{\prime \prime }+y = 2-2 x \]

15360

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

15361

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

15362

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

15363

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]

15364

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

15365

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

15366

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

15367

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]

15368

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

15369

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{x} x^{2} \]

15370

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

15371

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

15372

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

15377

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

15378

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

15379

\[ {}y^{\prime \prime }-y = 1 \]

15380

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

15381

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

15382

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

15383

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]

15384

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

15385

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

15386

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

15418

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

15419

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

15420

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

15421

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

15422

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

15423

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

15424

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

15425

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

15459

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]

15460

\[ {}y^{\prime \prime }+y = 1 \]

15494

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

15495

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

15496

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

15497

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

15498

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

15559

\[ {}x^{\prime \prime } = 1 \]

15560

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]