6.80 Problems 7901 to 8000

Table 6.159: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

7901

\[ {} 2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

7902

\[ {} y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

7903

\[ {} y y^{\prime } x +x^{2}+y^{2} = 0 \]

7904

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

7905

\[ {} 1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

7906

\[ {} x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

7907

\[ {} x -x^{2}-y^{2}+y y^{\prime } = 0 \]

7908

\[ {} 2 y-3 x +x y^{\prime } = 0 \]

7909

\[ {} x -y^{2}+2 y y^{\prime } x = 0 \]

7910

\[ {} -y-3 x^{2} \left (x^{2}+y^{2}\right )+x y^{\prime } = 0 \]

7911

\[ {} y-\ln \left (x \right )-x y^{\prime } = 0 \]

7912

\[ {} 3 x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

7913

\[ {} x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \]

7914

\[ {} x +y-\left (x -y\right ) y^{\prime } = 0 \]

7915

\[ {} 2 y-3 x y^{2}-x y^{\prime } = 0 \]

7916

\[ {} y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

7917

\[ {} y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

7918

\[ {} -y-x^{2} {\mathrm e}^{x}+x y^{\prime } = 0 \]

7919

\[ {} 1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

7920

\[ {} 2 y-x^{3}+x y^{\prime } = 0 \]

7921

\[ {} y+\left (-x +y^{2}\right ) y^{\prime } = 0 \]

7922

\[ {} 3 y^{3}-x y-\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

7923

\[ {} 3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

7924

\[ {} y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

7925

\[ {} 2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

7926

\[ {} y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

7927

\[ {} x y^{\prime }-y = 0 \]

7928

\[ {} y^{\prime }+y = 2 x +2 \]

7929

\[ {} y^{\prime }-y = x y \]

7930

\[ {} -3 y-\left (x -2\right ) {\mathrm e}^{x}+x y^{\prime } = 0 \]

7931

\[ {} i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

7932

\[ {} y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

7933

\[ {} y+\left (x y+x -3 y\right ) y^{\prime } = 0 \]

7934

\[ {} \left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

7935

\[ {} x y^{\prime }+y-x^{3} y^{6} = 0 \]

7936

\[ {} r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

7937

\[ {} y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

7938

\[ {} y y^{\prime }-x y^{2}+x = 0 \]

7939

\[ {} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

7940

\[ {} 2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

7941

\[ {} x y^{\prime } = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

7942

\[ {} 2+y^{2}-\left (x y+2 y+y^{3}\right ) y^{\prime } = 0 \]

7943

\[ {} 1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

7944

\[ {} 2 x y^{5}-y+2 x y^{\prime } = 0 \]

7945

\[ {} 1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

7946

\[ {} x y^{\prime } = 2 y+x^{3} {\mathrm e}^{x} \]

7947

\[ {} L i^{\prime }+R i = E \sin \left (2 t \right ) \]

7948

\[ {} x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

7949

\[ {} 4 x^{2} y y^{\prime } = 3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \]

7950

\[ {} x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

7951

\[ {} y^{\prime }+x \left (x +y\right ) = x^{3} \left (x +y\right )^{3}-1 \]

7952

\[ {} y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

7953

\[ {} x^{2} {y^{\prime }}^{2}+y y^{\prime } x -6 y^{2} = 0 \]

7954

\[ {} x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

7955

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

7956

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

7957

\[ {} 8 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

7958

\[ {} y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

7959

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

7960

\[ {} 16 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

7961

\[ {} x {y^{\prime }}^{5}-{y^{\prime }}^{4} y+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y = 0 \]

7962

\[ {} x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

7963

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

7964

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

7965

\[ {} y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

7966

\[ {} y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

7967

\[ {} y {y^{\prime }}^{2}-x y^{\prime }+3 y = 0 \]

7968

\[ {} y = x y^{\prime }-2 {y^{\prime }}^{2} \]

7969

\[ {} y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

7970

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

7971

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

7972

\[ {} \left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

7973

\[ {} y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

7974

\[ {} 2 y = {y^{\prime }}^{2}+4 x y^{\prime } \]

7975

\[ {} y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

7976

\[ {} {y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

7977

\[ {} \left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2} \]

7978

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7979

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

7980

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{5 x} \]

7981

\[ {} y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

7982

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

7983

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 3 x^{4} \]

7984

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

7985

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

7986

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

7987

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

7988

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

7989

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

7990

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

7991

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

7992

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

7993

\[ {} y^{\prime \prime }+25 y = 0 \]

7994

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

7995

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

7996

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

7997

\[ {} y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

7998

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

7999

\[ {} y^{\prime \prime }-4 y^{\prime } = 5 \]

8000

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]