| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }+x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 x y+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime } = \left (2 x^{2}-y^{2}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y^{2} = y y^{\prime } x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x \tan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y-{\mathrm e}^{\frac {y}{x}} x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y \cos \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\sqrt {x y}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+x y+y^{2} = x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x}{y}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y+\sqrt {-x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y \ln \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-3 y y^{\prime } x +2 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y+x}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = x +\frac {y}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y-2}{y-x -4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 y-x +5}{2 x -y-4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +3 y-5}{x -y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y-1+\left (y-x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +4 y\right ) y^{\prime } = 2 x +3 y-5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 = \left (2 x +y-4\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -2 y+5}{y-2 x -4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x -y+1}{2 x +y+4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (x -y^{2}\right ) y^{\prime }+y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} \left (y^{\prime }-x \right ) = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime } = y^{3}+x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x \left (2 x y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+x = 4 \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-\frac {2}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }+y = y^{2} \sqrt {x -x^{2} y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 y y^{\prime } x}{3} = \sqrt {x^{6}-y^{4}}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-x y\right ) y^{\prime }+\left (x y+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3+2 x +\left (-2+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 2 x \,{\mathrm e}^{x}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime } = \cos \left (\frac {1}{x}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x^{2} \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}}{1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-2 \sqrt {x y} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y-1}{x -y+3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{t}-1-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+x = a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|