6.89 Problems 8801 to 8900

Table 6.177: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

8801

\[ {} {y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

8802

\[ {} {y^{\prime }}^{2} = 4 x^{2} \]

8803

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

8804

\[ {} s^{\prime \prime }+2 s^{\prime }+s = 0 \]

8805

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8806

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

8807

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{2 x} \]

8808

\[ {} y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

8809

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

8810

\[ {} p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

8811

\[ {} \sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

8812

\[ {} 3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

8813

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

8814

\[ {} x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

8815

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

8816

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

8817

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

8818

\[ {} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

8819

\[ {} x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

8820

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

8821

\[ {} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

8822

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

8823

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 50 \,{\mathrm e}^{2 x} \]

8824

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

8825

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

8826

\[ {} 4 y+y^{\prime \prime } = x^{2} \]

8827

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

8828

\[ {} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

8829

\[ {} y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0 \]

8830

\[ {} {y^{\prime }}^{2} = a^{2}-y^{2} \]

8831

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8832

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

8833

\[ {} \left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

8834

\[ {} 2 y^{2} x^{3}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

8835

\[ {} \frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \]

8836

\[ {} \phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

8837

\[ {} u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

8838

\[ {} \left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

8839

\[ {} a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

8840

\[ {} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

8841

\[ {} y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

8842

\[ {} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

8843

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

8844

\[ {} \left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

8845

\[ {} \left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (1+k \right ) \eta = 0 \]

8846

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

8847

\[ {} x^{2}-y^{2}+2 y y^{\prime } x = 0 \]

8848

\[ {} x y^{\prime }-y = x^{2}+y^{2} \]

8849

\[ {} x y^{\prime }-y = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \]

8850

\[ {} x +y y^{\prime }+y-x y^{\prime } = 0 \]

8851

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

8852

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \]

8853

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+3 x_{2} \left (t \right )] \]

8854

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \]

8855

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+2 x_{2} \left (t \right )] \]

8856

\[ {} [x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

8857

\[ {} [x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+3 t] \]

8858

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 16 x_{1} \left (t \right )-5 x_{2} \left (t \right )] \]

8859

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )] \]

8860

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \]

8861

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \]

8862

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-18 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-9 x_{2} \left (t \right )] \]

8863

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

8864

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-8, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+3] \]

8865

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-8, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+3] \]

8866

\[ {} y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

8867

\[ {} y^{\prime \prime } = x +2 \]

8868

\[ {} y^{\prime \prime \prime } = x^{2} \]

8869

\[ {} y^{\prime }+y \cos \left (x \right ) = 0 \]

8870

\[ {} y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \sin \left (x \right ) \]

8871

\[ {} -y+y^{\prime \prime } = 0 \]

8872

\[ {} 4 y+y^{\prime \prime } = 0 \]

8873

\[ {} y^{\prime \prime }+k^{2} y = 0 \]

8874

\[ {} y^{\prime }+5 y = 2 \]

8875

\[ {} y^{\prime \prime } = 3 x +1 \]

8876

\[ {} y^{\prime } = k y \]

8877

\[ {} y^{\prime }-2 y = 1 \]

8878

\[ {} y^{\prime }+y = {\mathrm e}^{x} \]

8879

\[ {} y^{\prime }-2 y = x^{2}+x \]

8880

\[ {} 3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

8881

\[ {} y^{\prime }+3 y = {\mathrm e}^{i x} \]

8882

\[ {} y^{\prime }+i y = x \]

8883

\[ {} L y^{\prime }+R y = E \]

8884

\[ {} L y^{\prime }+R y = E \sin \left (\omega x \right ) \]

8885

\[ {} L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]

8886

\[ {} y^{\prime }+a y = b \left (x \right ) \]

8887

\[ {} y^{\prime }+2 x y = x \]

8888

\[ {} x y^{\prime }+y = 3 x^{3}-1 \]

8889

\[ {} y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

8890

\[ {} y^{\prime }-y \tan \left (x \right ) = {\mathrm e}^{\sin \left (x \right )} \]

8891

\[ {} y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

8892

\[ {} y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

8893

\[ {} 2 x y+x^{2} y^{\prime } = 1 \]

8894

\[ {} 2 y+y^{\prime } = b \left (x \right ) \]

8895

\[ {} y^{\prime } = 1+y \]

8896

\[ {} y^{\prime } = 1+y^{2} \]

8897

\[ {} y^{\prime } = 1+y^{2} \]

8898

\[ {} y^{\prime \prime }-4 y = 0 \]

8899

\[ {} 3 y^{\prime \prime }+2 y = 0 \]

8900

\[ {} y^{\prime \prime }+16 y = 0 \]