6.87 Problems 8601 to 8700

Table 6.173: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

8601

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

8602

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

8603

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

8604

\[ {} 4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

8605

\[ {} 4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

8606

\[ {} 2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

8607

\[ {} 3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

8608

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

8609

\[ {} x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

8610

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

8611

\[ {} x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

8612

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {y \left (x^{2}-1\right )}{4} = 0 \]

8613

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x y \left (1+x \right ) = 0 \]

8614

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-6\right ) y = 0 \]

8615

\[ {} x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

8616

\[ {} 9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (36 x^{4}-16\right ) y = 0 \]

8617

\[ {} y^{\prime \prime }+x y = 0 \]

8618

\[ {} 4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

8619

\[ {} x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

8620

\[ {} y^{\prime \prime }+k^{2} x^{2} y = 0 \]

8621

\[ {} y^{\prime \prime }+k^{2} x^{4} y = 0 \]

8622

\[ {} x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

8623

\[ {} 4 y+y^{\prime \prime } = 0 \]

8624

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

8625

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0 \]

8626

\[ {} 16 \left (1+x \right )^{2} y^{\prime \prime }+3 y = 0 \]

8627

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

8628

\[ {} x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

8629

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

8630

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

8631

\[ {} y^{\prime \prime }+\frac {y}{4 x} = 0 \]

8632

\[ {} x y^{\prime \prime }+y^{\prime }-x y = 0 \]

8633

\[ {} y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]

8634

\[ {} y^{\prime }+2 y = 0 \]

8635

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

8636

\[ {} y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]

8637

\[ {} y^{\prime \prime }-\frac {y}{4} = 0 \]

8638

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]

8639

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]

8640

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

8641

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]

8642

\[ {} y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]

8643

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]

8644

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

8645

\[ {} y^{\prime }-6 y = 0 \]

8646

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]

8647

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]

8648

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

8649

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]

8650

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]

8651

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]

8652

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]

8653

\[ {} y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]

8654

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

8655

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

8656

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

8657

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]

8658

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]

8659

\[ {} y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]

8660

\[ {} y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

8661

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]

8662

\[ {} 4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]

8663

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]

8664

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

8665

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

8666

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]

8667

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

8668

\[ {} y^{\prime } = \frac {x^{2}}{y} \]

8669

\[ {} y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

8670

\[ {} y^{\prime } = \sin \left (x \right ) y \]

8671

\[ {} x y^{\prime } = \sqrt {1-y^{2}} \]

8672

\[ {} y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

8673

\[ {} y y^{\prime } x = \sqrt {1+y^{2}} \]

8674

\[ {} \left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]

8675

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

8676

\[ {} x y^{\prime }+y = y^{2} \]

8677

\[ {} 2 x^{2} y y^{\prime }+y^{2} = 2 \]

8678

\[ {} y^{\prime }-x y^{2} = 2 x y \]

8679

\[ {} \left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

8680

\[ {} y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]

8681

\[ {} {\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = 0 \]

8682

\[ {} \frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

8683

\[ {} x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

8684

\[ {} \frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

8685

\[ {} \frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

8686

\[ {} 2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

8687

\[ {} y^{\prime } = \left (y-1\right ) \left (1+x \right ) \]

8688

\[ {} y^{\prime } = {\mathrm e}^{x -y} \]

8689

\[ {} y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

8690

\[ {} y^{\prime } = \frac {\sqrt {y}}{x} \]

8691

\[ {} z^{\prime } = 10^{x +z} \]

8692

\[ {} x^{\prime }+t = 1 \]

8693

\[ {} y^{\prime } = \cos \left (x -y\right ) \]

8694

\[ {} y^{\prime }-y = 2 x -3 \]

8695

\[ {} \left (2 y+x \right ) y^{\prime } = 1 \]

8696

\[ {} y^{\prime }+y = 2 x +1 \]

8697

\[ {} y^{\prime } = \cos \left (x -y-1\right ) \]

8698

\[ {} y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

8699

\[ {} y^{\prime } = 2 \sqrt {2 x +y+1} \]

8700

\[ {} y^{\prime } = \left (x +y+1\right )^{2} \]