6.119 Problems 11801 to 11900

Table 6.237: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

11801

\[ {} \left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2} = 0 \]

11802

\[ {} \left (a y^{2}+b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2} = 0 \]

11803

\[ {} \left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0 \]

11804

\[ {} \left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \]

11805

\[ {} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y = 0 \]

11806

\[ {} x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

11807

\[ {} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \]

11808

\[ {} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right ) = 0 \]

11809

\[ {} \left (y^{4}+x^{2} y^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x -y^{2} = 0 \]

11810

\[ {} 9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2} = 0 \]

11811

\[ {} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (-x^{2}+y^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0 \]

11812

\[ {} \left (a^{2} \sqrt {x^{2}+y^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a^{2} \sqrt {x^{2}+y^{2}}-y^{2} = 0 \]

11813

\[ {} \left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2} = 0 \]

11814

\[ {} {y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0 \]

11815

\[ {} {y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

11816

\[ {} f \left (x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0 \]

11817

\[ {} \left (x^{2}+y^{2}\right ) f \left (\frac {x}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0 \]

11818

\[ {} \left (x^{2}+y^{2}\right ) f \left (\frac {y}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0 \]

11819

\[ {} {y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

11820

\[ {} {y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2} = 0 \]

11821

\[ {} {y^{\prime }}^{3}+y^{\prime }-y = 0 \]

11822

\[ {} {y^{\prime }}^{3}+x y^{\prime }-y = 0 \]

11823

\[ {} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y = 0 \]

11824

\[ {} {y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

11825

\[ {} {y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

11826

\[ {} {y^{\prime }}^{2}-a x y y^{\prime }+2 a y^{2} = 0 \]

11827

\[ {} {y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

11828

\[ {} {y^{\prime }}^{3}-y^{4} y^{\prime } x -y^{5} = 0 \]

11829

\[ {} {y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0 \]

11830

\[ {} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

11831

\[ {} {y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

11832

\[ {} {y^{\prime }}^{2}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+y^{2} x^{3}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

11833

\[ {} a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

11834

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

11835

\[ {} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

11836

\[ {} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

11837

\[ {} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

11838

\[ {} {y^{\prime }}^{3} x^{3}-3 y {y^{\prime }}^{2} x^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

11839

\[ {} 2 \left (x y^{\prime }+y\right )^{3}-y y^{\prime } = 0 \]

11840

\[ {} {y^{\prime }}^{3} \sin \left (x \right )-\left (\sin \left (x \right ) y-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) y = 0 \]

11841

\[ {} 2 {y^{\prime }}^{3} y-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0 \]

11842

\[ {} y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

11843

\[ {} 16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

11844

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

11845

\[ {} x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \]

11846

\[ {} {y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

11847

\[ {} {y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \]

11848

\[ {} {y^{\prime }}^{4}-4 y \left (-2 y+x y^{\prime }\right )^{2} = 0 \]

11849

\[ {} {y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

11850

\[ {} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

11851

\[ {} {y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}} = 0 \]

11852

\[ {} {y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0 \]

11853

\[ {} {y^{\prime }}^{n}-f \left (x \right ) g \left (y\right ) = 0 \]

11854

\[ {} a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

11855

\[ {} x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y = 0 \]

11856

\[ {} \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

11857

\[ {} \sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0 \]

11858

\[ {} x \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-y = 0 \]

11859

\[ {} a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

11860

\[ {} y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0 \]

11861

\[ {} a y \sqrt {1+{y^{\prime }}^{2}}-2 y y^{\prime } x +y^{2}-x^{2} = 0 \]

11862

\[ {} f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

11863

\[ {} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+b x y^{\prime }-y = 0 \]

11864

\[ {} \ln \left (y^{\prime }\right )+x y^{\prime }+a y+b = 0 \]

11865

\[ {} \ln \left (y^{\prime }\right )+a \left (x y^{\prime }-y\right ) = 0 \]

11866

\[ {} y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

11867

\[ {} \sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

11868

\[ {} a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

11869

\[ {} {y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

11870

\[ {} \left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2}-1 = 0 \]

11871

\[ {} \left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

11872

\[ {} a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y = 0 \]

11873

\[ {} f \left (x {y^{\prime }}^{2}\right )+2 x y^{\prime }-y = 0 \]

11874

\[ {} f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y = 0 \]

11875

\[ {} y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

11876

\[ {} y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

11877

\[ {} y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {x^{2} a}{4}+\frac {b x}{2}\right ) \]

11878

\[ {} y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

11879

\[ {} y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \]

11880

\[ {} y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \]

11881

\[ {} y^{\prime } = -\frac {\left (x^{2} a -2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \]

11882

\[ {} y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

11883

\[ {} y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \]

11884

\[ {} y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \]

11885

\[ {} y^{\prime } = \frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \]

11886

\[ {} y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \]

11887

\[ {} y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

11888

\[ {} y^{\prime } = \frac {x}{-y+F \left (x^{2}+y^{2}\right )} \]

11889

\[ {} y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \]

11890

\[ {} y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \]

11891

\[ {} y^{\prime } = \frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \]

11892

\[ {} y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \]

11893

\[ {} y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \]

11894

\[ {} y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

11895

\[ {} y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

11896

\[ {} y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1} \]

11897

\[ {} y^{\prime } = \frac {-x +F \left (x^{2}+y^{2}\right )}{y} \]

11898

\[ {} y^{\prime } = \frac {F \left (-\frac {2 y \ln \left (x \right )-1}{y}\right ) y^{2}}{x} \]

11899

\[ {} y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \]

11900

\[ {} y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {-y+x^{2}}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \]