6.191 Problems 19001 to 19100

Table 6.381: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

19001

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

19002

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

19003

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

19004

\[ {} y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

19005

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

19006

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

19007

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

19008

\[ {} y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19009

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

19010

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

19011

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

19012

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t \]

19013

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

19014

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

19015

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

19016

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

19017

\[ {} y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]

19018

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

19019

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

19020

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

19021

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

19022

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19023

\[ {} y^{\prime \prime \prime \prime }-9 y = 0 \]

19024

\[ {} [y_{1}^{\prime }\left (t \right ) = -5 y_{1} \left (t \right )+y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = -9 y_{1} \left (t \right )+5 y_{2} \left (t \right )] \]

19025

\[ {} [y_{1}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-2 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 6 y_{1} \left (t \right )-2 y_{2} \left (t \right )] \]

19026

\[ {} [y_{1}^{\prime }\left (t \right ) = 4 y_{1} \left (t \right )-4 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-4 y_{2} \left (t \right )] \]

19027

\[ {} [y_{1}^{\prime }\left (t \right ) = 6 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = -6 y_{1} \left (t \right )] \]

19028

\[ {} [y_{1}^{\prime }\left (t \right ) = -4 y_{1} \left (t \right )-y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )] \]

19029

\[ {} [y_{1}^{\prime }\left (t \right ) = 2 y_{1} \left (t \right )-64 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-14 y_{2} \left (t \right )] \]

19030

\[ {} [y_{1}^{\prime }\left (t \right ) = -4 y_{1} \left (t \right )-y_{2} \left (t \right )+2 \,{\mathrm e}^{t}, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (2 t \right )] \]

19031

\[ {} [y_{1}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-y_{2} \left (t \right )+{\mathrm e}^{-t}, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+3 y_{2} \left (t \right )+2 \,{\mathrm e}^{t}] \]

19032

\[ {} [y_{1}^{\prime }\left (t \right ) = -y_{1} \left (t \right )-5 y_{2} \left (t \right )+3, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+3 y_{2} \left (t \right )+5 \cos \left (t \right )] \]

19033

\[ {} [y_{1}^{\prime }\left (t \right ) = -2 y_{1} \left (t \right )+y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (t \right )] \]

19034

\[ {} [y_{1}^{\prime }\left (t \right ) = y_{2} \left (t \right )-y_{3} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+y_{3} \left (t \right )-{\mathrm e}^{-t}, y_{3}^{\prime }\left (t \right ) = y_{1} \left (t \right )+y_{2} \left (t \right )+{\mathrm e}^{t}] \]

19035

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

19036

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

19037

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

19038

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

19039

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

19040

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

19041

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

19042

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

19043

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

19044

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19045

\[ {} y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

19046

\[ {} y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

19047

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

19048

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

19049

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

19050

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

19051

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

19052

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

19053

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

19054

\[ {} y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

19055

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

19056

\[ {} y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

19057

\[ {} y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

19058

\[ {} y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

19059

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

19060

\[ {} 2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

19061

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

19062

\[ {} y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

19063

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

19064

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

19065

\[ {} y^{\prime \prime }+y = \delta \left (t -1\right ) \]

19066

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]

19067

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]

19068

\[ {} y^{\prime \prime }+w^{2} y = g \left (t \right ) \]

19069

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]

19070

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]

19071

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

19072

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]

19073

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]

19074

\[ {} y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]

19075

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]

19076

\[ {} \frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

19077

\[ {} \frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

19078

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{2} \left (t \right )+x_{3} \left (t \right )] \]

19079

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )] \]

19080

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

19081

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

19082

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

19083

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

19084

\[ {} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19085

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

19086

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

19087

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

19088

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

19089

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

19090

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19091

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

19092

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )] \]

19093

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

19094

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

19095

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

19096

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

19097

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

19098

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

19099

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19100

\[ {} [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{2} \left (t \right )-4 x_{3} \left (t \right )] \]