| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 2 y^{\prime \prime \prime }-y^{\prime \prime }+36 y^{\prime }-18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+k^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 b x^{\prime }+k^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime }+8 y^{\prime \prime }-11 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-16 y^{\prime }-16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}+y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime }+28 y^{\prime \prime }+61 y^{\prime }+37 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 18 y^{\prime \prime \prime }-33 y^{\prime \prime }+20 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }+12 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-4 y^{\prime \prime }-4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+5 y^{\prime \prime }-8 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}+y^{\prime \prime \prime \prime }-9 y^{\prime \prime \prime }-13 y^{\prime \prime }+8 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-11 y^{\prime \prime \prime }+36 y^{\prime \prime }-16 y^{\prime }-64 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+2 y^{\prime \prime }-8 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime \prime }-24 y^{\prime \prime \prime }+35 y^{\prime \prime }+6 y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime \prime }+20 y^{\prime \prime \prime }+35 y^{\prime \prime }+25 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+11 y^{\prime \prime }+5 y^{\prime }-14 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+5 y^{\prime \prime }+7 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime }+2 y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }-5 y = 20
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+4 y = 14
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+14 y^{\prime }-8 y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime \prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = -\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 27 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = -6 x^{2}-8 x +4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 15 \,{\mathrm e}^{x}-8 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 15 \,{\mathrm e}^{x}-8 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 12 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 12 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 2+{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 6 x +6 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 20 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \cos \left (x \right )+4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 7+75 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 50 x +13 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{-x} \left (2 \sin \left (x \right )+4 \cos \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 8 x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = 3 \,{\mathrm e}^{-x}-4 x -6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 7 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 10 \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 12 \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 4 \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 10 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 2-8 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime } = -18 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 10 \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+5 x = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+5 x = 8 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-5 y^{\prime }-3 y = -9 x^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 2-2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = \sin \left (b x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = \sin \left (a x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 4 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 15 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 18 x -3+20 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime } = 42 \,{\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+14 y = 42 \,{\mathrm e}^{x}-7
\]
|
✓ |
✓ |
✓ |
|