6.247 Problems 24601 to 24700

Table 6.493: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

24601

\[ {} 2 y^{\prime \prime \prime }-y^{\prime \prime }+36 y^{\prime }-18 y = 0 \]

24602

\[ {} x^{\prime \prime }+k^{2} x = 0 \]

24603

\[ {} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

24604

\[ {} x^{\prime \prime }+2 b x^{\prime }+k^{2} x = 0 \]

24605

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

24606

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = 0 \]

24607

\[ {} y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0 \]

24608

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

24609

\[ {} 4 y^{\prime \prime \prime }+8 y^{\prime \prime }-11 y^{\prime }+3 y = 0 \]

24610

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-16 y^{\prime }-16 y = 0 \]

24611

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

24612

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

24613

\[ {} y^{\left (5\right )}+y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = 0 \]

24614

\[ {} 4 y^{\prime \prime \prime }+28 y^{\prime \prime }+61 y^{\prime }+37 y = 0 \]

24615

\[ {} 4 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime }+10 y = 0 \]

24616

\[ {} 18 y^{\prime \prime \prime }-33 y^{\prime \prime }+20 y^{\prime }-4 y = 0 \]

24617

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

24618

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

24619

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+12 y^{\prime }+y = 0 \]

24620

\[ {} 8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

24621

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-4 y^{\prime \prime }-4 y^{\prime } = 0 \]

24622

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+5 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

24623

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

24624

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

24625

\[ {} -4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

24626

\[ {} y^{\left (5\right )}+y^{\prime \prime \prime \prime }-9 y^{\prime \prime \prime }-13 y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

24627

\[ {} y^{\prime \prime \prime \prime }-11 y^{\prime \prime \prime }+36 y^{\prime \prime }-16 y^{\prime }-64 y = 0 \]

24628

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

24629

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+2 y^{\prime \prime }-8 y^{\prime }-8 y = 0 \]

24630

\[ {} 4 y^{\prime \prime \prime \prime }-24 y^{\prime \prime \prime }+35 y^{\prime \prime }+6 y^{\prime }-9 y = 0 \]

24631

\[ {} 4 y^{\prime \prime \prime \prime }+20 y^{\prime \prime \prime }+35 y^{\prime \prime }+25 y^{\prime }+6 y = 0 \]

24632

\[ {} y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+11 y^{\prime \prime }+5 y^{\prime }-14 y = 0 \]

24633

\[ {} y^{\prime \prime \prime }+5 y^{\prime \prime }+7 y^{\prime }+3 y = 0 \]

24634

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

24635

\[ {} y^{\prime \prime }+y = 1 \]

24636

\[ {} 4 y+y^{\prime \prime } = 8 \]

24637

\[ {} y^{\prime \prime \prime }+y^{\prime }+2 y = 5 \]

24638

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 20 \]

24639

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3 \]

24640

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+4 y = 14 \]

24641

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12 \]

24642

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12 \]

24643

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+14 y^{\prime }-8 y = 2 \]

24644

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = 11 \]

24645

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime } = 11 \]

24646

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 11 \]

24647

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime } = 12 \]

24648

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime } = 12 \]

24649

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 12 \]

24650

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime } = 12 \]

24651

\[ {} y^{\prime \prime }+y^{\prime } = -\cos \left (x \right ) \]

24652

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

24653

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 27 x^{2} \]

24654

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = -6 x^{2}-8 x +4 \]

24655

\[ {} 4 y+y^{\prime \prime } = 15 \,{\mathrm e}^{x}-8 x \]

24656

\[ {} 4 y+y^{\prime \prime } = 15 \,{\mathrm e}^{x}-8 x^{2} \]

24657

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 12 \,{\mathrm e}^{2 x} \]

24658

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 12 \,{\mathrm e}^{-2 x} \]

24659

\[ {} y^{\prime \prime }-4 y = 2+{\mathrm e}^{2 x} \]

24660

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 6 x +6 \,{\mathrm e}^{-x} \]

24661

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 20 \cos \left (x \right ) \]

24662

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \cos \left (x \right )+4 \sin \left (x \right ) \]

24663

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 7+75 \sin \left (2 x \right ) \]

24664

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 50 x +13 \,{\mathrm e}^{3 x} \]

24665

\[ {} y^{\prime \prime }+y = \cos \left (x \right ) \]

24666

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{2 x} \]

24667

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{-x} \left (2 \sin \left (x \right )+4 \cos \left (x \right )\right ) \]

24668

\[ {} -y+y^{\prime \prime } = 8 x \,{\mathrm e}^{x} \]

24669

\[ {} y^{\prime \prime \prime }-y = x \]

24670

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

24671

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = 3 \,{\mathrm e}^{-x}-4 x -6 \]

24672

\[ {} y^{\prime \prime \prime \prime }-y = 7 x^{2} \]

24673

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{-x} \]

24674

\[ {} -y+y^{\prime \prime } = 10 \sin \left (x \right )^{2} \]

24675

\[ {} y^{\prime \prime }+y = 12 \cos \left (x \right )^{2} \]

24676

\[ {} 4 y+y^{\prime \prime } = 4 \sin \left (x \right )^{2} \]

24677

\[ {} y^{\prime \prime }+y = 10 \,{\mathrm e}^{2 x} \]

24678

\[ {} y^{\prime \prime }-4 y = 2-8 x \]

24679

\[ {} y^{\prime \prime }+3 y^{\prime } = -18 x \]

24680

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 10 \,{\mathrm e}^{-3 x} \]

24681

\[ {} x^{\prime \prime }+4 x^{\prime }+5 x = 10 \]

24682

\[ {} x^{\prime \prime }+4 x^{\prime }+5 x = 8 \sin \left (t \right ) \]

24683

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x \]

24684

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x \]

24685

\[ {} 4 y^{\prime \prime }+y = 2 \]

24686

\[ {} 2 y^{\prime \prime }-5 y^{\prime }-3 y = -9 x^{2}-1 \]

24687

\[ {} y^{\prime \prime }+y^{\prime } = 1+x \]

24688

\[ {} y^{\prime \prime }+y = x^{3} \]

24689

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

24690

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 4 \]

24691

\[ {} y^{\prime \prime }+y^{\prime } = 2-2 x \]

24692

\[ {} y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

24693

\[ {} y^{\prime \prime }+a^{2} y = \sin \left (b x \right ) \]

24694

\[ {} y^{\prime \prime }+a^{2} y = \sin \left (a x \right ) \]

24695

\[ {} y^{\prime \prime }+9 y = 4 \cos \left (x \right ) \]

24696

\[ {} y^{\prime \prime }+9 y = 15 \cos \left (2 x \right ) \]

24697

\[ {} y^{\prime \prime }+9 y = 18 x -3+20 \,{\mathrm e}^{x} \]

24698

\[ {} y^{\prime \prime }-y^{\prime } = 42 \,{\mathrm e}^{4 x} \]

24699

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{2 x} \]

24700

\[ {} y^{\prime \prime }+6 y^{\prime }+14 y = 42 \,{\mathrm e}^{x}-7 \]