| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (y^{3}+2 x^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (-y^{3}+2 x^{3}\right ) y^{\prime } = \left (-2 y^{3}+x^{3}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-2 y^{3}+x^{3}\right ) y^{\prime } = \left (-y^{3}+2 x^{3}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (x -y\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (2-x y^{2}-2 x y^{3}\right ) y^{\prime }+1+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2-10 x^{2} y^{3}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-2 x^{2} y^{3}\right ) y^{\prime }+\left (1-2 y^{2} x^{3}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-x y\right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (x y+1\right ) \left (1+x^{2} y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-y^{4}\right ) y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime } = a^{2} y x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 \left (x -y^{4}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2 y+2 x^{2} y^{3}+x y^{4}\right ) y^{\prime }+\left (1+y^{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (a +x y^{n}\right ) y^{\prime }+b y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{1+m}+h \left (x \right ) y^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {b^{2}-y^{2}} = \sqrt {a^{2}-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {x y}+x -y = \sqrt {x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -2 \sqrt {x y}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x \sqrt {x^{2}+y^{2}+1}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime } = x \left (x^{2}+y^{2}\right )+y \sqrt {x^{2}+y^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a \,x^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = y+x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+3 x^{2} = 8 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x^{2} a +b y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2} = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = 1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a^{2}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a +b y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \left (y-1\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a^{2} y^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-7 y^{\prime }+12 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+a y^{\prime }+b = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+a y^{\prime }+b x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+a y^{\prime }+b y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+x y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x y^{\prime }+x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y^{\prime } \left (1+x \right )+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-\left (2-x \right ) y^{\prime }+1-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 x y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|