5.3.4 Problems 301 to 400

Table 5.53: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

2349

\[ {} y^{\prime } = t +y^{2} \]

2350

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2351

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2352

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2353

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2354

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2356

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2357

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2359

\[ {} y^{\prime } = t^{2}+y^{2} \]

2363

\[ {} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2393

\[ {} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2394

\[ {} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2395

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2396

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2397

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2398

\[ {} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2410

\[ {} y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

2411

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2442

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2443

\[ {} \sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

2444

\[ {} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

2445

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2446

\[ {} t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \]

2453

\[ {} t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

2458

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

2464

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

2466

\[ {} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

2467

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

2478

\[ {} \frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

2506

\[ {} {\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

2510

\[ {} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2511

\[ {} 1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2512

\[ {} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2515

\[ {} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2516

\[ {} 3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2517

\[ {} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2520

\[ {} y^{\prime } = t^{2}+y^{2} \]

2521

\[ {} y^{\prime } = {\mathrm e}^{t}+y^{2} \]

2522

\[ {} y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]

2523

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2524

\[ {} y^{\prime } = t +y^{2} \]

2525

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2531

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2534

\[ {} y^{\prime } = t^{2}+y^{2} \]

2536

\[ {} y^{\prime } = t y^{a} \]

2538

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2539

\[ {} y^{\prime } = 1-t +y^{2} \]

2540

\[ {} y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2544

\[ {} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2573

\[ {} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2574

\[ {} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2575

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2576

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2577

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2578

\[ {} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2580

\[ {} t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

2592

\[ {} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2593

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2622

\[ {} y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = {\mathrm e}^{t} \]

2639

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2640

\[ {} \sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

2641

\[ {} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

2642

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2643

\[ {} t^{3} y^{\prime \prime }+\sin \left (t^{2}\right ) y^{\prime }+t y = 0 \]

2655

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

2659

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

2661

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

2663

\[ {} t \left (1-t \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) t \right ) y^{\prime }-\alpha \beta y = 0 \]

2664

\[ {} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

2665

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

2670

\[ {} t^{2} y^{\prime \prime }+t p \left (t \right ) y^{\prime }+q \left (t \right ) y = 0 \]

2690

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

2691

\[ {} y^{\prime \prime }+y^{\prime }+7 y = \left \{\begin {array}{cc} t & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

2693

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

2786

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

2789

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right )] \]

2790

\[ {} [x^{\prime }\left (t \right ) = -b x \left (t \right ) y \left (t \right )+m, y^{\prime }\left (t \right ) = b x \left (t \right ) y \left (t \right )-g y \left (t \right )] \]

2791

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )-b x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -c y \left (t \right )+d x \left (t \right ) y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )+x \left (t \right )^{2}+y \left (t \right )^{2}] \]

2792

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right ) y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )-y \left (t \right ) x \left (t \right )^{2}, z^{\prime }\left (t \right ) = 1-z \left (t \right )+x \left (t \right )^{2}] \]

2793

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )^{2}-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) \sin \left (\pi y \left (t \right )\right )] \]

2794

\[ {} [x^{\prime }\left (t \right ) = \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-1] \]

2795

\[ {} [x^{\prime }\left (t \right ) = -1-y \left (t \right )-{\mathrm e}^{x \left (t \right )}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ) \left ({\mathrm e}^{x \left (t \right )}-1\right ), z^{\prime }\left (t \right ) = x \left (t \right )+\sin \left (z \left (t \right )\right )] \]

2796

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right ), z^{\prime }\left (t \right ) = {\mathrm e}^{z \left (t \right )}-x \left (t \right )] \]

2812

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2814

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2816

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

2817

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {} [x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2819

\[ {} [x^{\prime }\left (t \right ) = {\mathrm e}^{y \left (t \right )}-x \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{x \left (t \right )}+y \left (t \right )] \]

2821

\[ {} z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2824

\[ {} z^{\prime \prime }+z-2 z^{3} = 0 \]

2854

\[ {} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2868

\[ {} \left (x^{2}+3 x \right ) y^{\prime } = y^{3}+2 y \]