| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime }+x = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y-1}{x -y-1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 \sin \left (x \right ) y-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y+\left (y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+y^{2}+x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y = \left (y^{4}+x \right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+x y \left (x y^{2}+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )+x y = x \left (-x^{2}+1\right ) \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y-2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 x^{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) y-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (3 x^{2}+y\right )-x \left (-y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [5 y^{\prime }\left (t \right )-3 x^{\prime }\left (t \right )-5 y \left (t \right ) = 5 t, 3 x^{\prime }\left (t \right )-5 y^{\prime }\left (t \right )-2 x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} y^{\prime \prime }+4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+1 = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 {y^{\prime }}^{2} = 2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2} = x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3} = y y^{\prime }+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = y y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime } x = 2 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{5}+2 x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\frac {1}{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }-{y^{\prime }}^{{2}/{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-y y^{\prime }-2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 y+y^{\prime \prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sin \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sin \left (x y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \cos \left (x y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+3 y^{\prime }-y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+3 y^{\prime }-y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-2 x y = x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-x y^{\prime }+y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-2 x \right ) y^{\prime \prime }+4 x y^{\prime }-4 y = x^{2}-x
\]
|
✓ |
✓ |
✗ |
|