| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y = x y^{\prime }+x^{3} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+3 y = x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x y-\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 y}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {-y^{2}-x^{2}+1}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-2 y+b y^{2} = c \,x^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y+y^{2} = x^{{2}/{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }-y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = 1-x {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime } = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a y y^{\prime \prime }+b y = c
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}+x^{2}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 y \left (x \sqrt {y}-1\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y y^{\prime } = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-y^{2}-x -x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-2 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-3 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y-x^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y-x^{4}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{3} y-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{3} y-x^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|