5.3.24 Problems 2301 to 2400

Table 5.93: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

9774

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

9778

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

9779

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9780

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

9784

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

9785

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9787

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9791

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9792

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9793

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9794

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9798

\[ {} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

9801

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

9802

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \]

9803

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

9804

\[ {} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

9810

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

9812

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

9813

\[ {} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3} \]

9814

\[ {} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4} \]

9819

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

9821

\[ {} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

9822

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

9824

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

9826

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

9827

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

9828

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

9829

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

9832

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

9833

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

9834

\[ {} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0 \]

9837

\[ {} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

9838

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

9841

\[ {} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

9842

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

9858

\[ {} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

9859

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = x^{2} \]

9924

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y = 0 \]

9965

\[ {} 4 x y-\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

9989

\[ {} y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

10010

\[ {} y^{\prime } = \frac {2 y}{x} \]

10017

\[ {} y^{\prime } = \sqrt {-y^{2}-x^{2}+1} \]

10019

\[ {} y^{\prime } = \sqrt {y}+x \]

10033

\[ {} x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

10034

\[ {} x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

10035

\[ {} x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

10036

\[ {} u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

10037

\[ {} y y^{\prime }-y = x \]

10043

\[ {} y y^{\prime } = 1-x {y^{\prime }}^{3} \]

10050

\[ {} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

10060

\[ {} y y^{\prime \prime } = 1 \]

10061

\[ {} y y^{\prime \prime } = x \]

10062

\[ {} y^{2} y^{\prime \prime } = x \]

10064

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

10066

\[ {} a y y^{\prime \prime }+b y = c \]

10075

\[ {} x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

10076

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

10077

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

10079

\[ {} y^{\prime } = x^{2}+y^{2} \]

10083

\[ {} y^{\prime } = y^{2}+x^{2}-1 \]

10084

\[ {} y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]

10085

\[ {} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

10089

\[ {} y^{\prime \prime }-y y^{\prime } = 2 x \]

10090

\[ {} y^{\prime }-y^{2}-x -x^{2} = 0 \]

10091

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10092

\[ {} y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

10093

\[ {} y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

10094

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

10095

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

10096

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

10097

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

10098

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10099

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

10100

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

10101

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

10102

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

10103

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

10104

\[ {} y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

10105

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

10106

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10107

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10108

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

10109

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

10110

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

10111

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10112

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

10113

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

10114

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

10115

\[ {} y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

10116

\[ {} y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

10117

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

10118

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

10125

\[ {} y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

10126

\[ {} y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

10127

\[ {} y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

10128

\[ {} y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

10129

\[ {} y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

10130

\[ {} y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

10131

\[ {} y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

10132

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]