Internal
problem
ID
[24000]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:51:13 PM
CAS
classification
:
[_exact, _rational]
ode:=2*x/y(x)+5*y(x)^2-4*x+(3*y(x)^2-x^2/y(x)^2+10*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*x/y[x]+5*y[x]^2-4*x )+( 3*y[x]^2-x^2/y[x]^2 + 10*x*y[x] )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x + 2*x/y(x) + (-x**2/y(x)**2 + 10*x*y(x) + 3*y(x)**2)*Derivative(y(x), x) + 5*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out