88.7.5 problem 5

Internal problem ID [24000]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 41
Problem number : 5
Date solved : Thursday, October 02, 2025 at 09:51:13 PM
CAS classification : [_exact, _rational]

\begin{align*} \frac {2 x}{y}+5 y^{2}-4 x +\left (3 y^{2}-\frac {x^{2}}{y^{2}}+10 y x \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.064 (sec). Leaf size: 29
ode:=2*x/y(x)+5*y(x)^2-4*x+(3*y(x)^2-x^2/y(x)^2+10*x*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ -2 x^{2}+5 x y^{2}+\frac {x^{2}}{y}+y^{3}+c_1 = 0 \]
Mathematica. Time used: 60.154 (sec). Leaf size: 2433
ode=( 2*x/y[x]+5*y[x]^2-4*x )+( 3*y[x]^2-x^2/y[x]^2 + 10*x*y[x] )*D[y[x],{x,1}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x + 2*x/y(x) + (-x**2/y(x)**2 + 10*x*y(x) + 3*y(x)**2)*Derivative(y(x), x) + 5*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out