Internal
problem
ID
[24904]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
229
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 10:49:21 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(x+y(x))^2*diff(y(x),x)^2+(2*y(x)^2+x*y(x)-x^2)*diff(y(x),x)+y(x)*(y(x)-x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+y[x])^2*D[y[x],x]^2 +(2*y[x]^2+x*y[x]-x^2)*D[y[x],x]+y[x]*(y[x]-x)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x + y(x))*y(x) + (x + y(x))**2*Derivative(y(x), x)**2 + (-x**2 + x*y(x) + 2*y(x)**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)