4.12.21 Problems 2001 to 2034

Table 4.1119: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

24800

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

24803

\[ {} y^{\left (6\right )}-y = x^{10} \]

24804

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 16 x^{3}+20 x^{2} \]

24808

\[ {} y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x} \]

24822

\[ {} y^{\prime \prime \prime \prime }-y = x^{6} \]

24826

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right ) \]

24827

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right ) \]

24875

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right )^{2} \]

25205

\[ {} y^{\prime \prime \prime }+y^{\prime }+4 y = 0 \]

25259

\[ {} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{t} \]

25260

\[ {} y^{\prime \prime \prime \prime }+y^{\prime }+4 y = 0 \]

25262

\[ {} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0 \]

25263

\[ {} y^{\prime \prime \prime }-y = 0 \]

25264

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

25265

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

25266

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = 0 \]

25267

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

25268

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-25 y^{\prime }+50 y = 0 \]

25269

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+25 y^{\prime }+50 y = 0 \]

25270

\[ {} y^{\left (6\right )}+27 y^{\prime \prime \prime \prime }+243 y^{\prime \prime }+729 y = 0 \]

25271

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+18 y^{\prime \prime }-27 y = 0 \]

25272

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

25273

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t} \]

25274

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right ) \]

25275

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t} \]

25276

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t} \]

25277

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t} \]

25278

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 4 t \,{\mathrm e}^{2 t} \]

25279

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = t \]

25280

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t} \]

25281

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right ) \]

25282

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t} \]

25364

\[ {} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y = 0 \]

25440

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]