| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y = t y^{\prime }+3 {y^{\prime }}^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-t y^{\prime } = -2 {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-t y^{\prime } = -4 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y^{\prime }} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \ln \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y^{\prime }} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 {y^{\prime }}^{2}-9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}+3 y y^{\prime } x +2 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = {y^{\prime }}^{2}-2 y^{\prime }+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = \sin \left (y^{\prime }\right )+y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = 2 x y^{\prime }+\sin \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y y^{\prime }-4 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (-2 y+x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (y^{\prime }-1\right )^{2} = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2}-x y^{\prime }+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} {y^{\prime }}^{2}+y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x {y^{\prime }}^{2}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = x^{2} y^{2}+x^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{3} = 1+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y = \frac {k \left (y y^{\prime }+x \right )}{\sqrt {1+{y^{\prime }}^{2}}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x = y y^{\prime }+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x {y^{\prime }}^{2}+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = x^{4} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{z -y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} \left (x^{2}-1\right ) = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +x^{3} = 16 y^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-2 x y^{\prime }-y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = {y^{\prime }}^{2}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-a \,x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|