4.23.4 3y(x)5y(x)y(x)+1=0

ODE
3y(x)5y(x)y(x)+1=0 ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Independent variable missing, Solve for y

Mathematica
cpu = 0.454499 (sec), leaf count = 171

{Solve[c1+x=1y(x)1Root[#1K[1]+3#15+1&,1]dK[1],y(x)],Solve[c1+x=1y(x)1Root[#1K[2]+3#15+1&,2]dK[2],y(x)],Solve[c1+x=1y(x)1Root[#1K[3]+3#15+1&,3]dK[3],y(x)],Solve[c1+x=1y(x)1Root[#1K[4]+3#15+1&,4]dK[4],y(x)],Solve[c1+x=1y(x)1Root[#1K[5]+3#15+1&,5]dK[5],y(x)]}

Maple
cpu = 0.174 (sec), leaf count = 50

{x(y(x))225(RootOf(3_Z5y(x)_Z+1))32+3y(x)(RootOf(3_Z5y(x)_Z+1))42_C1=0} Mathematica raw input

DSolve[1 - y[x]*y'[x] + 3*y'[x]^5 == 0,y[x],x]

Mathematica raw output

{Solve[x + C[1] == Integrate[Root[1 - K[1]*#1 + 3*#1^5 & , 1]^(-1), {K[1], 1, y[
x]}], y[x]], Solve[x + C[1] == Integrate[Root[1 - K[2]*#1 + 3*#1^5 & , 2]^(-1), 
{K[2], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[1 - K[3]*#1 + 3*#1^5 &
 , 3]^(-1), {K[3], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[1 - K[4]*#
1 + 3*#1^5 & , 4]^(-1), {K[4], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Roo
t[1 - K[5]*#1 + 3*#1^5 & , 5]^(-1), {K[5], 1, y[x]}], y[x]]}

Maple raw input

dsolve(3*diff(y(x),x)^5-y(x)*diff(y(x),x)+1 = 0, y(x),'implicit')

Maple raw output

x-1/2*y(x)^2-5/2*RootOf(3*_Z^5-y(x)*_Z+1)^3+3/2*y(x)*RootOf(3*_Z^5-y(x)*_Z+1)^4-
_C1 = 0