4.18.3 xy(x)22y(x)y(x)=0

ODE
xy(x)22y(x)y(x)=0 ODE Classification

[_rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 30.7129 (sec), leaf count = 39

Solve[{K$1374x=y(K$1374)K$1374+2,y(x)=K$1374(c1K$13742K$1374log(K$1374)2)(K$13741)2},{y(x),K$1374}]

Maple
cpu = 0.016 (sec), leaf count = 42

{[x(_T)=2ln(_T)+2_T+_C1(_T1)2,y(_T)=_T(2_Tln(_T)2+(_C1+4)_T)(_T1)2]} Mathematica raw input

DSolve[-y[x] - 2*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

Solve[{K$1374*x == 2 + y[K$1374]/K$1374, y[x] == (K$1374*(-2 + K$1374*C[1] - 2*K
$1374*Log[K$1374]))/(-1 + K$1374)^2}, {y[x], K$1374}]

Maple raw input

dsolve(x*diff(y(x),x)^2-2*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

[x(_T) = 1/(_T-1)^2*(-2*ln(_T)+2*_T+_C1), y(_T) = _T*(-2*_T*ln(_T)-2+(_C1+4)*_T)
/(_T-1)^2]