4.18.14 (ay(x))y(x)+b+xy(x)2=0

ODE
(ay(x))y(x)+b+xy(x)2=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.702642 (sec), leaf count = 212

{{y(x)ab+asinh(2c1)+acosh(2c1)+b2+b(sinh(4c1)+cosh(4c1))((b+x1)sinh(c1)+(bx1)cosh(c1))2bsinh(2c1)bcosh(2c1)+bxbsinh(2c1)cosh(2c1)},{y(x)abasinh(2c1)acosh(2c1)b2+b(sinh(4c1)+cosh(4c1))((b+x1)sinh(c1)+(bx1)cosh(c1))2+bsinh(2c1)+bcosh(2c1)bxbsinh(2c1)cosh(2c1)}}

Maple
cpu = 0.027 (sec), leaf count = 37

{(y(x))22ay(x)+a24bx=0,y(x)=x_C12+a_C1+b_C1} Mathematica raw input

DSolve[b + (a - y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -((-(a*b) + b^2 + b*x + a*Cosh[2*C[1]] - b*Cosh[2*C[1]] + a*Sinh[2*C[1
]] - b*Sinh[2*C[1]] + Sqrt[b*((-1 + b - x)*Cosh[C[1]] + (-1 - b + x)*Sinh[C[1]])
^2*(Cosh[4*C[1]] + Sinh[4*C[1]])])/(b - Cosh[2*C[1]] - Sinh[2*C[1]]))}, {y[x] ->
 (a*b - b^2 - b*x - a*Cosh[2*C[1]] + b*Cosh[2*C[1]] - a*Sinh[2*C[1]] + b*Sinh[2*
C[1]] + Sqrt[b*((-1 + b - x)*Cosh[C[1]] + (-1 - b + x)*Sinh[C[1]])^2*(Cosh[4*C[1
]] + Sinh[4*C[1]])])/(b - Cosh[2*C[1]] - Sinh[2*C[1]])}}

Maple raw input

dsolve(x*diff(y(x),x)^2+(a-y(x))*diff(y(x),x)+b = 0, y(x),'implicit')

Maple raw output

y(x)^2-2*a*y(x)+a^2-4*b*x = 0, y(x) = (_C1^2*x+_C1*a+b)/_C1