4.18.15 xy(x)2+(xy(x))y(x)y(x)+1=0

ODE
xy(x)2+(xy(x))y(x)y(x)+1=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.311527 (sec), leaf count = 16

{{y(x)(1c11)x+c1}}

Maple
cpu = 0.03 (sec), leaf count = 38

{(y(x))2+2xy(x)+x24x=0,y(x)=x_C12+_C1x+1_C1+1} Mathematica raw input

DSolve[1 - y[x] + (x - y[x])*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> x*(-1 + C[1]^(-1)) + C[1]}}

Maple raw input

dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^2+2*x*y(x)+x^2-4*x = 0, y(x) = (_C1^2*x+_C1*x+1)/(_C1+1)