[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.249133 (sec), leaf count = 166
Maple ✓
cpu = 0.098 (sec), leaf count = 107
DSolve[-y[x] - x*y[x] + 3*x^4*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> (1 + x + x^2*ArcTanh[Sqrt[1 + x]]^2 - 2*Sqrt[3]*x*Sqrt[1 + x]*C[1] + 3
*x^2*C[1]^2 + 2*x*ArcTanh[Sqrt[1 + x]]*(Sqrt[1 + x] - Sqrt[3]*x*C[1]))/(12*x^2)}
, {y[x] -> (1 + x + x^2*ArcTanh[Sqrt[1 + x]]^2 + 2*Sqrt[3]*x*Sqrt[1 + x]*C[1] +
3*x^2*C[1]^2 + 2*x*ArcTanh[Sqrt[1 + x]]*(Sqrt[1 + x] + Sqrt[3]*x*C[1]))/(12*x^2)
}}
Maple raw input
dsolve(3*x^4*diff(y(x),x)^2-x*y(x)-y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = 0, -1/3*3^(1/2)/y(x)^(1/2)*(x*y(x)+y(x))^(1/2)/x-1/3*3^(1/2)*arctanh((x*y
(x)+y(x))^(1/2)/y(x)^(1/2))+2*y(x)^(1/2)+_C1 = 0, 1/3*3^(1/2)/y(x)^(1/2)*(x*y(x)
+y(x))^(1/2)/x+1/3*3^(1/2)*arctanh((x*y(x)+y(x))^(1/2)/y(x)^(1/2))+2*y(x)^(1/2)+
_C1 = 0