4.19.42 4x5y(x)2+12x4y(x)y(x)+9=0

ODE
4x5y(x)2+12x4y(x)y(x)+9=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.706901 (sec), leaf count = 121

{Solve[log(x)=c1+2x5/21x3y(x)2sin1(x3/2y(x))3x5(x3y(x)21),y(x)],Solve[2x5/21x3y(x)2sin1(x3/2y(x))3x5(x3y(x)21)+log(x)=c1,y(x)]}

Maple
cpu = 0.158 (sec), leaf count = 67

{(y(x))2x3=0,x3y(x)+xx4(y(x))2x_C1=0,y(x)+1x2x4(y(x))2x_C1=0} Mathematica raw input

DSolve[9 + 12*x^4*y[x]*y'[x] + 4*x^5*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[Log[x] == C[1] + (2*x^(5/2)*ArcSin[x^(3/2)*y[x]]*Sqrt[1 - x^3*y[x]^2])/(3
*Sqrt[x^5*(-1 + x^3*y[x]^2)]), y[x]], Solve[Log[x] + (2*x^(5/2)*ArcSin[x^(3/2)*y
[x]]*Sqrt[1 - x^3*y[x]^2])/(3*Sqrt[x^5*(-1 + x^3*y[x]^2)]) == C[1], y[x]]}

Maple raw input

dsolve(4*x^5*diff(y(x),x)^2+12*x^4*y(x)*diff(y(x),x)+9 = 0, y(x),'implicit')

Maple raw output

y(x)^2-1/x^3 = 0, y(x)+1/x^2*(x^4*y(x)^2-x)^(1/2)-_C1 = 0, x^3*y(x)+x*(x^4*y(x)^
2-x)^(1/2)-_C1 = 0