3.5.3.11 Example 11
y=x+(y)2(123y)=x+p2(123p)

Where f=1,g=p2(123p).  Since f(p)p then this is d’Almbert ode. Taking derivative w.r.t. x gives

p=(f+xfdpdx)+(gdpdx)p=f+(xf+g)dpdxpf=(xf+g)dpdx

Using values for f,g the above simplifies to

(2A)p1=(2p2p2)dpdx

The singular solution is when dpdx=0 which results in p=1. Substituting this in (1) gives

y=x(123)=x+13

The general solution is when dpdx0. Then (2A) is now separable. Solving for p gives

p=c1xp=c1x

Substituting each one of the above solutions of p in (1) gives

y1=x+(p223p3)=x+((c1x)223(c1x)3)=x+(c1x+23(c1x)32)=c1+23(c1x)32

And

y2=x+(p223p3)=x+((c1x)223(c1x)3)=x+(c1x23(c1x)32)=c123(c1x)32

Therefore the solutions are

y=x+13y=c1+23(c1x)32y=c123(c1x)32