\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac { \left ( 27\, \left ( y \left ( x \right ) \right ) ^{3}+27\,{{\rm e}^{3\,{x}^{2}}}y \left ( x \right ) +18\,{{\rm e}^{3\,{x}^{2}}} \left ( y \left ( x \right ) \right ) ^{2}+3\, \left ( y \left ( x \right ) \right ) ^{3}{{\rm e}^{3\,{x}^{2}}}+27\,{{\rm e}^{9/2\,{x}^{2}}}+27\,{{\rm e}^{9/2\,{x}^{2}}}y \left ( x \right ) +9\,{{\rm e}^{9/2\,{x}^{2}}} \left ( y \left ( x \right ) \right ) ^{2}+{{\rm e}^{9/2\,{x}^{2}}} \left ( y \left ( x \right ) \right ) ^{3} \right ) {{\rm e}^{3\,{x}^{2}}}x}{243\,{{\rm e}^{9/2\,{x}^{2}}}y \left ( x \right ) }}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.109 (sec), leaf count = 54 \[ \left \{ y \left ( x \right ) =-369\,{\frac {{{\rm e}^{3/2\,{x}^{2}}}}{ 123+123\,{{\rm e}^{3/2\,{x}^{2}}}-136\,{\it RootOf} \left ( -41\,{x}^{2 }-50243409\,\int ^{{\it \_Z}}\! \left ( 9248\,{{\it \_a}}^{3}-1860867\, {\it \_a}+1860867 \right ) ^{-1}{d{\it \_a}}+27\,{\it \_C1} \right ) }} \right \} \]