\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =-{\frac {-{x}^{2}-xy \left ( x \right ) -{x}^{3}-x \left ( y \left ( x \right ) \right ) ^{2}+2\,y \left ( x \right ) {x}^{2}\ln \left ( x \right ) -{x}^{3} \left ( \ln \left ( x \right ) \right ) ^{2}- \left ( y \left ( x \right ) \right ) ^{3}+3\,x \left ( y \left ( x \right ) \right ) ^{2}\ln \left ( x \right ) -3\,{x}^{2} \left ( \ln \left ( x \right ) \right ) ^{2}y \left ( x \right ) +{x}^{3} \left ( \ln \left ( x \right ) \right ) ^{3}}{{x}^{2}}}=0} \]
Mathematica: cpu = 0.061008 (sec), leaf count = 99 \[ \text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {3 y(x)}{x^2}+\frac {1-3 \log (x)}{x}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^3}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=c_1+\frac {29^{2/3}}{9 \sqrt [3]{\frac {1}{x^3}}},y(x)\right ] \]
Maple: cpu = 0.031 (sec), leaf count = 39 \[ \left \{ y \left ( x \right ) ={\frac {x \left ( 9\,\ln \left ( x \right ) -3+29\,{\it RootOf} \left ( -81\,\int ^{{\it \_Z}}\! \left ( 841\,{{\it \_a}}^{3}-27\,{\it \_a}+27 \right ) ^{-1}{d{\it \_a}}+x+3\,{ \it \_C1} \right ) \right ) }{9}} \right \} \]