Table 1.9: Hyperbolic PDE’s (Wave) breakdown of results. Time in seconds
|
||||||||
# |
PDE |
description |
Mathematica
| Maple
|
hand solved? |
Animated? |
||
|
|
|
result |
time |
result |
time |
|
|
|
||||||||
333 |
Finite length string |
General solution for both ends fixed. Domain is \(0\dots L\) |
✓ |
31.256 |
✓ |
5.257 |
Yes |
|
334 |
Finite length string |
both ends fixed, inital position zero (special case) |
✓ |
30.778 |
✓ |
2.093 |
Yes |
Yes |
335 |
Finite length string |
both ends fixed, inital velocity zero (special case) |
✓ |
28.551 |
✓ |
1.545 |
Yes |
Yes |
336 |
Finite length string |
both ends fixed but domain is \(-\pi \dots \pi \). zero intial position, non zero initial velocity |
✓ |
30.489 |
✓ |
13.026 |
Yes |
Yes |
337 |
Finite length string |
both ends fixed but domain is \(-1 \dots 1\). intial position is an impulse, zero initial velocity |
✓ |
4.061 |
✓ |
3.058 |
Yes |
|
338 |
Finite length string |
Logan book, page 28. Both ends fixed |
✓ |
0.932 |
✓ |
0.754 |
|
|
339 |
Finite length string |
non-zero initial velocity. Both ends fixed |
✓ |
87.438 |
✓ |
1.256 |
|
|
340 |
Finite length string |
Logan book page 149) |
✓ |
18.954 |
✓ |
2.06 |
|
|
341 |
Finite length string |
Haberman 8.5.2 (a) |
✓ |
21.679 |
✓ |
11.875 |
|
|
342 |
Finite length string |
Haberman 8.5.2 (b) |
✓ |
44.734 |
✓ |
7.368 |
Yes |
|
343 |
Finite length string |
Both I.C. not zero |
✓ |
39.364 |
✓ |
2.855 |
|
|
344 |
Finite length string |
With constant source |
✓ |
38.044 |
✓ |
6.007 |
|
|
345 |
Finite length string |
Logan page 213 |
✓ |
13.653 |
✓ |
4.996 |
|
|
346 |
Finite length string |
Telegraphy PDE |
✓ |
86.112 |
✓ |
2.658 |
|
|
347 |
Finite length string |
Dispersion term present (general case) |
✓ |
34.446 |
✓ |
5.641 |
Yes |
|
348 |
Finite length string |
Dispersion term present |
✓ |
91.097 |
✓ |
17.417 |
Yes |
|
349 |
Finite length string |
Dispersion term present (specific case) |
✓ |
93.203 |
✓ |
4.549 |
Yes |
Yes |
350 |
Finite length string |
non-zero initial position |
✓ |
31.018 |
✓ |
9.898 |
|
|
351 |
Finite length string |
With source |
✓ |
38.874 |
✓ |
15.175 |
|
|
352 |
Finite length string |
Right end free (general case) |
✓ |
24.766 |
✓ |
8.484 |
Yes |
|
353 |
Finite length string |
Right end free, zero initial velocity (general case) |
✓ |
5.795 |
✓ |
7.003 |
Yes |
|
354 |
Finite length string |
Right end free, zero initial velocity (special case) |
✓ |
94.767 |
✓ |
4.104 |
Yes |
Yes |
355 |
Finite length string |
Right end free, zero initial velocity, damping present (general case) |
✓ |
49.358 |
✓ |
8.853 |
Yes |
|
356 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, underdamped) |
✓ |
112.752 |
✓ |
5.928 |
Yes |
Yes |
357 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, critical damped) |
✓ |
112.322 |
✓ |
7.007 |
Yes |
Yes |
358 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, over damped) |
✓ |
114.153 |
✓ |
6.029 |
Yes |
Yes |
359 |
Finite length string |
I.C. at different times, right end free, with source |
✗ |
1.199 |
✓ |
60.707 |
Yes |
|
360 |
Finite length string |
Right end oscillates |
✓ |
95.279 |
✓ |
9.051 |
|
|
361 |
Finite length string |
Perioidic B.C. |
✗ |
7.374 |
✗ |
1.578 |
|
|
362 |
Finite length string |
Mixed B.C. |
✗ |
22.566 |
✗ |
2.016 |
|
|
363 |
Finite length string |
Left end fixed, right end non-homogeneous Neumann BC. Zero initial conditions |
✓ |
72.198 |
✓ |
8.039 |
Yes |
Yes |
364 |
Semi-infinite domain |
Left end fixed, (general case) |
✓ |
2.204 |
✗ |
1.63 |
Yes |
|
365 |
Semi-infinite domain |
Left end fixed with specific initial position |
✓ |
13.27 |
✓ |
2.888 |
Yes |
|
366 |
Semi-infinite domain |
Logan page 115, left end fixed with source |
✓ |
0.169 |
✓ |
1.659 |
|
|
367 |
Semi-infinite domain |
Left moving boundary condition |
✓ |
7.618 |
✓ |
1.341 |
|
|
368 |
Semi-infinite domain |
moving Left end |
✓ |
13.244 |
✓ |
1.02 |
|
|
369 |
Semi-infinite domain |
I.C. at \(t=1\) |
✓ |
9.057 |
✓ |
0.283 |
|
|
370 |
Semi-infinite domain |
B.C. at \(x=1\) |
✓ |
71.399 |
✓ |
0.565 |
|
|
371 |
Semi-infinite domain |
Left end free. zero initial velocity (general solution) |
✓ |
5.943 |
✓ |
0.347 |
|
|
372 |
Semi-infinite domain |
Left end free. zero initial velocity (Special solution) |
✓ |
3.816 |
✓ |
0.73 |
Yes |
Yes |
373 |
Semi-infinite domain |
Left end fixed. zero initial velocity (Special solution) |
✓ |
2.893 |
✓ |
0.72 |
Yes |
Yes |
374 |
Semi-infinite domain |
Left end free. zero initial position (general solution) |
✓ |
7.456 |
✓ |
0.349 |
|
|
375 |
Semi-infinite domain |
Left end free. Non zero initial position and velocity (general solution) |
✓ |
30.559 |
✓ |
0.332 |
|
|
376 |
Semi-infinite domain |
Left end free with source |
✓ |
0.156 |
✓ |
0.253 |
|
|
377 |
Infinite domain |
General case. \(u_{tt} = u_{xx}\) with \(u(x,0)=f(x),u_t(x,0)=g(x)\) |
✓ |
0.017 |
✓ |
0.108 |
|
|
378 |
Infinite domain |
General case. No IC given. \(u_{tt} + u_{xt} = c^2 u_{xx}\) |
✓ |
0.004 |
✓ |
0.178 |
|
|
379 |
Infinite domain |
\(u_{tt}= c^2 u_{xx} + f(x,t)\), IC at \(t=1\),\(u(x,1) = g(x),u_t(x,1)=h(x)\) |
✓ |
0.149 |
✓ |
2.117 |
|
|
380 |
Infinite domain |
No source. \(u_{tt} = u_{xx}\), with \(u(x,0) =e^{-x^2},u_t(x,0)=1\) |
✓ |
0.002 |
✓ |
0.095 |
|
|
381 |
Infinite domain |
With source term. \(u_{tt} = u_{xx} + m\) |
✓ |
0.01 |
✓ |
0.088 |
|
|
382 |
Infinite domain |
non-linear (Solitons) \(u_t +6 u(x,t) u_x + u_{xxx} = 0\) |
✓ |
0.028 |
✓ |
0.132 |
Yes |
Yes |
383 |
Infinite domain |
Inhomogeneous PDE \(3 u_{xx}- u_{tt} + u_{xt}=1\) |
✓ |
0.003 |
✓ |
0.095 |
|
|
384 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
0.028 |
✓ |
0.075 |
|
|
385 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
0.002 |
✓ |
0.041 |
|
|
386 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
71.005 |
✓ |
0.113 |
|
|
387 |
Infinite domain |
zero initial velocity |
✓ |
0.002 |
✓ |
0.043 |
Yes |
Yes |
388 |
Infinite domain |
zero initial velocity |
✓ |
0.004 |
✓ |
0.766 |
Yes |
Yes |
389 |
Infinite domain |
General case \(u_{tt} = u_{xx}\) with \(u(x,0)=\sin x, u_t(x,0)=-2 x e^{-x^2}\) |
✓ |
0.104 |
✓ |
0.079 |
|
|
390 |
Infinite domain |
General case. \(u_{tt} =u_{xx}\) dAlembert solution, box function as initial position |
✓ |
0.003 |
✓ |
0.073 |
Yes |
Yes |
391 |
Infinite domain |
\(u_{tt}=4 u_{xx}+ \cos (t)\) dAlembert solution with \(u(x,0)=\sin x,u_t(x,0)=\cos x\) |
✓ |
0.093 |
✓ |
0.115 |
Yes |
Yes |
392 |
Infinite domain |
\(u_{tt}=c^2 u_{xx}\) dAlembert solution with \(u(x,0)=\delta (x-a),u_t(x,0)=0\) |
✓ |
0.472 |
✓ |
0.125 |
Yes |
|
393 |
Infinite domain |
system of 2 inhomogeneous linear hyperbolic system with constant coefficients |
✓ |
0.262 |
✗ |
0.371 |
|
|
394 |
Cartesian coordinates |
Rectangular membrane. Fixed on all edges, General solution |
✗ |
2.344 |
✓ |
435.606 |
Yes |
|
395 |
Cartesian coordinates |
Rectangular membrane. Fixed on all edges, zero velocity. Specific example |
✗ |
0.424 |
✓ |
6.533 |
Yes |
Yes |
396 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, Specific example |
✓ |
35.568 |
✓ |
12.471 |
Yes |
Yes |
397 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, Specific example, delta in center |
✓ |
9.778 |
✓ |
13.637 |
Yes |
Yes |
398 |
Cartesian coordinates |
All 4 edges fixed |
✓ |
5.245 |
✓ |
6.812 |
|
|
399 |
Cartesian coordinates |
All edges fixed (Haberman 8.5.5 (a) |
✓ |
27.223 |
✗ |
1.017 |
|
|
400 |
Cartesian coordinates |
2 edgs fixed, 2 free, zero initial velocity |
✓ |
6.344 |
✓ |
11.118 |
|
|
401 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, general solution |
✓ |
1.434 |
✗ (Timed out) |
600. |
Yes |
|
402 |
Cartesian coordinates |
With damping |
✓ |
9.472 |
✓ |
28.236 |
|
|
403 |
Cartesian coordinates |
On the whole plane |
✓ |
0.133 |
✗ |
0.161 |
|
|
404 |
Polar coordinates |
no \(\theta \) dependency, fixed boundary, general case |
✓ |
31.99 |
✓ |
4.367 |
Yes |
|
405 |
Polar coordinates |
no \(\theta \) dependency. Specific example. Both initial conditions not zero |
✓ |
31.872 |
✓ |
51.951 |
|
|
406 |
Polar coordinates |
no \(\theta \) dependency. Specific example. Both initial conditions not zero |
✓ |
31.175 |
✓ |
54.262 |
Yes |
Yes |
407 |
Polar coordinates |
no \(\theta \) dependency. Using integral transforms. Source present. Specific example |
✗ |
1.746 |
✓ |
16.58 |
|
|
408 |
Polar coordinates |
no \(\theta \) dependency. Using integral transforms. Source present. Specific example |
✗ |
1.853 |
✓ |
5.803 |
|
|
409 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, general solution |
✓ |
9.756 |
✗ |
6.959 |
Yes |
|
410 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial velocity, general solution |
✓ |
4.485 |
✗ |
6.933 |
Yes |
|
411 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial velocity, specific example |
✓ |
15.091 |
✗ |
6.368 |
Yes |
Yes |
412 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial position, specific example |
✓ |
7.533 |
✗ |
5.072 |
Yes |
Yes |
413 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial position with internal source (Haberman 8.5.5. (b) |
✗ |
0.038 |
✗ |
4.683 |
Yes |
|
414 |
Spherical coordinates |
No I.C. no B.C. |
✓ |
0.038 |
✓ |
5.734 |
|
|
415 |
Cylindrical coordinates |
No I.C. no B.C. |
✓ |
0.006 |
✓ |
0.309 |
|
|
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|