2.3.18 Problem 18

Solved as higher order Euler type ode
Maple
Mathematica
Sympy

Internal problem ID [8876]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 18
Date solved : Sunday, March 30, 2025 at 01:45:24 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

Solved as higher order Euler type ode

Time used: 0.154 (sec)

The ode can be normalized and rewritten as Euler ode.

This is Euler ODE of higher order. Let y=xλ. Hence

y=λxλ1y=λ(λ1)xλ2y=λ(λ1)(λ2)xλ3

Substituting these back into

x4y+x3y+x2y+xy=0

gives

xλxλ1+x2λ(λ1)xλ2+x3λ(λ1)(λ2)xλ3+xλ=0

Which simplifies to

λxλ+λ(λ1)xλ+λ(λ1)(λ2)xλ+xλ=0

And since xλ0 then dividing through by xλ, the above becomes

λ+λ(λ1)+λ(λ1)(λ2)+1=0

Simplifying gives the characteristic equation as

λ32λ2+2λ+1=0

Solving the above gives the following roots

λ1=(188+12249)1/36+43(188+12249)1/3+23λ2=(188+12249)1/31223(188+12249)1/3+23+i3((188+12249)1/3643(188+12249)1/3)2λ3=(188+12249)1/31223(188+12249)1/3+23i3((188+12249)1/3643(188+12249)1/3)2

This table summarises the result

root multiplicity type of root
(188+12249)1/31223(188+12249)1/3+23±3((188+12249)1/3643(188+12249)1/3)2i 1 complex conjugate root
(188+12249)1/36+43(188+12249)1/3+23 1 real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a c1xλ basis solution. Each real root of multiplicty two, generates c1xλ and c2xλln(x) basis solutions. Each real root of multiplicty three, generates c1xλ and c2xλln(x) and c3xλln(x)2 basis solutions, and so on. Each complex root α±iβ of multiplicity one generates xα(c1cos(βln(x))+c2sin(βln(x))) basis solutions. And each complex root α±iβ of multiplicity two generates ln(x)xα(c1cos(βln(x))+c2sin(βln(x))) basis solutions. And each complex root α±iβ of multiplicity three generates ln(x)2xα(c1cos(βln(x))+c2sin(βln(x))) basis solutions. And so on. Using the above show that the solution is

y=x(188+12249)1/31223(188+12249)1/3+23(c1cos(3((188+12249)1/3643(188+12249)1/3)ln(x)2)c2sin(3((188+12249)1/3643(188+12249)1/3)ln(x)2))+c3x(188+12249)1/36+43(188+12249)1/3+23

The fundamental set of solutions for the homogeneous solution are the following

y1=x(188+12249)1/31223(188+12249)1/3+23cos(3((188+12249)1/3643(188+12249)1/3)ln(x)2)y2=x(188+12249)1/31223(188+12249)1/3+23sin(3((188+12249)1/3643(188+12249)1/3)ln(x)2)y3=x(188+12249)1/36+43(188+12249)1/3+23

Maple. Time used: 0.004 (sec). Leaf size: 184
ode:=x^4*diff(diff(diff(y(x),x),x),x)+x^3*diff(diff(y(x),x),x)+x^2*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
y=c1x(188+12249)2/34(188+12249)1/386(188+12249)1/3+c2x8+(188+12249)2/3+8(188+12249)1/312(188+12249)1/3sin(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)+c3x8+(188+12249)2/3+8(188+12249)1/312(188+12249)1/3cos(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)

Maple trace

Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful
 

Maple step by step

Let’s solvex4(ddxd2dx2y(x))+x3(ddxddxy(x))+x2(ddxy(x))+xy(x)=0Highest derivative means the order of the ODE is3ddxd2dx2y(x)Isolate 3rd derivativeddxd2dx2y(x)=y(x)x3(ddxddxy(x))x+ddxy(x)x2Group terms withy(x)on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearddxd2dx2y(x)+ddxddxy(x)x+ddxy(x)x2+y(x)x3=0Multiply by denominators of the ODE(ddxd2dx2y(x))x3+(ddxddxy(x))x2+(ddxy(x))x+y(x)=0Make a change of variablest=ln(x)Substitute the change of variables back into the ODECalculate the1stderivative ofywith respect tox, using the chain ruleddxy(x)=(ddty(t))(ddxt(x))Compute derivativeddxy(x)=ddty(t)xCalculate the2ndderivative ofywith respect tox, using the chain ruleddxddxy(x)=(ddtddty(t))(ddxt(x))2+(ddxddxt(x))(ddty(t))Compute derivativeddxddxy(x)=ddtddty(t)x2ddty(t)x2Calculate the3rdderivative ofywith respect tox, using the chain ruleddxd2dx2y(x)=(ddtd2dt2y(t))(ddxt(x))3+3(ddxt(x))(ddxddxt(x))(ddtddty(t))+(ddxd2dx2t(x))(ddty(t))Compute derivativeddxd2dx2y(x)=ddtd2dt2y(t)x33(ddtddty(t))x3+2(ddty(t))x3Substitute the change of variables back into the ODE(ddtd2dt2y(t)x33(ddtddty(t))x3+2(ddty(t))x3)x3+(ddtddty(t)x2ddty(t)x2)x2+ddty(t)+y(t)=0Simplifyddtd2dt2y(t)2ddtddty(t)+2ddty(t)+y(t)=0Characteristic polynomial of ODEr32r2+2r+1=0Roots of the characteristic polynomialr=[(188+12249)1/36+43(188+12249)1/3+23,(188+12249)1/31223(188+12249)1/3+23+I3((188+12249)1/3643(188+12249)1/3)2,(188+12249)1/31223(188+12249)1/3+23I3((188+12249)1/3643(188+12249)1/3)2]Solution fromr=(188+12249)1/36+43(188+12249)1/3+23y1(t)=e((188+12249)1/36+43(188+12249)1/3+23)tSolutions fromr=(188+12249)1/31223(188+12249)1/3+23+I3((188+12249)1/3643(188+12249)1/3)2andr=(188+12249)1/31223(188+12249)1/3+23I3((188+12249)1/3643(188+12249)1/3)2[y2(t)=e((188+12249)1/31223(188+12249)1/3+23)tsin(3((188+12249)1/3643(188+12249)1/3)t2),y3(t)=e((188+12249)1/31223(188+12249)1/3+23)tcos(3((188+12249)1/3643(188+12249)1/3)t2)]General solution of the ODEy(t)=C1y1(t)+C2y2(t)+C3y3(t)Substitute in solutions and simplifyy(t)=C1e((188+12249)2/34(188+12249)1/38)t6(188+12249)1/3+e((188+12249)2/3+8(188+12249)1/38)t12(188+12249)1/3(sin(3((188+12383)2/3+8)t12(188+12383)1/3)C2+cos(3((188+12383)2/3+8)t12(188+12383)1/3)C3)Change variables back usingt=ln(x)y(x)=C1e((188+12249)2/34(188+12249)1/38)ln(x)6(188+12249)1/3+e((188+12249)2/3+8(188+12249)1/38)ln(x)12(188+12249)1/3(sin(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)C2+cos(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)C3)Simplifyy(x)=x2/3(C3x(188+12249)2/3812(188+12249)1/3cos(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)+C2x(188+12249)2/3812(188+12249)1/3sin(3((188+12383)2/3+8)ln(x)12(188+12383)1/3)+C1x(188+12249)2/386(188+12249)1/3)
Mathematica. Time used: 0.006 (sec). Leaf size: 81
ode=x^4*D[y[x],{x,3}]+x^3*D[y[x],{x,2}]+x^2*D[y[x],x]+x*y[x]== 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)c1xRoot[#132#12+2#1+1&,1]+c3xRoot[#132#12+2#1+1&,3]+c2xRoot[#132#12+2#1+1&,2]
Sympy. Time used: 0.324 (sec). Leaf size: 54
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 3)) + x**3*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), x) + x*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
y(x)=C1xCRootOf(x32x2+2x+1,0)+C2xCRootOf(x32x2+2x+1,1)+C3xCRootOf(x32x2+2x+1,2)