ID |
problem |
ODE |
1 |
\(y^{\prime \prime }+c y^{\prime }+k y = 0\) |
|
2 |
\(w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2}\) |
|
3 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
4 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
5 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
6 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
7 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
8 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
9 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
10 |
\(y^{\prime \prime }+y = \sin \left (x \right )\) |
|
11 |
\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\) |
|
12 |
\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\) |
|
13 |
\(y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )\) |
|
14 |
\(y^{\prime \prime \prime }+y^{\prime }+y = x\) |
|
15 |
\(x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 y x^{2} = 1\) |
|
16 |
\(x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 y x^{2} = x\) |
|
17 |
\(x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x\) |
|
18 |
\(x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0\) |
|
19 |
\(x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x\) |
|
20 |
\(5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0\) |
|
21 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0\) |
|
22 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x\) |
|
23 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1\) |
|
24 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0\) |
|
25 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0\) |
|
26 |
\(y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0\) |
|
27 |
\(\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0\) |
|
28 |
\(y^{\prime } = {\mathrm e}^{-\frac {y}{x}}\) |
|
29 |
\(y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}\) |
|
30 |
\(4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right )\) |
|
31 |
\(v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3}\) |
|