Internal
problem
ID
[8303]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
19
Date
solved
:
Sunday, November 10, 2024 at 09:09:43 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
\begin{align*} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y&=x \end{align*}
Does not support this form of ODE for higher order. Terminating.
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{4} \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )+\left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right ) x^{3}+x^{2} \left (\frac {d}{d x}y \left (x \right )\right )+x y \left (x \right )=x \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right ) \end {array} \]
Maple dsolve solution
Solving time : 0.013
(sec)
Leaf size : 223
dsolve(x^4*diff(diff(diff(y(x),x),x),x)+x^3*diff(diff(y(x),x),x)+diff(y(x),x)*x^2+x*y(x) = x,
y(x),singsol=all)
\[
y = c_{2} x^{\frac {\left (47-3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{192}+\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{12}+\frac {2}{3}} \cos \left (\frac {\left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \left (3 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \sqrt {83}-47 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}+16\right ) \ln \left (x \right )}{192}\right )+c_3 \,x^{\frac {\left (47-3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{192}+\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{12}+\frac {2}{3}} \sin \left (\frac {\left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \left (3 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}} \sqrt {3}\, \sqrt {83}-47 \left (188+12 \sqrt {3}\, \sqrt {83}\right )^{{1}/{3}}+16\right ) \ln \left (x \right )}{192}\right )+x^{\frac {\left (-47+3 \sqrt {249}\right ) \left (188+12 \sqrt {249}\right )^{{2}/{3}}}{96}-\frac {\left (188+12 \sqrt {249}\right )^{{1}/{3}}}{6}+\frac {2}{3}} c_{1} +1
\]
Mathematica DSolve solution
Solving time : 0.004
(sec)
Leaf size : 82
DSolve[{x^4*D[y[x],{x,3}]+x^3*D[y[x],{x,2}]+x^2*D[y[x],x]+x*y[x]== x,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to c_1 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,1\right ]}+c_3 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,3\right ]}+c_2 x^{\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}+1\&,2\right ]}+1
\]