2.3.22 Problem 22
Internal
problem
ID
[10154]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
22
Date
solved
:
Monday, December 08, 2025 at 07:43:25 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }\left (x \right )+1+{y^{\prime }\left (x \right )}^{2}&=x \\
\end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent
variable \(y\). Let \begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} \left (x^{2}+1\right ) u^{\prime }\left (x \right )+1+u \left (x \right )^{2}-x = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Unknown ode type.
Unable to solve. Terminating.
2.3.22.1 ✓ Maple. Time used: 0.013 (sec). Leaf size: 457
ode:=(x^2+1)*diff(diff(y(x),x),x)+1+diff(y(x),x)^2 = x;
dsolve(ode,y(x), singsol=all);
\[
y = \int \frac {\left (\frac {i x}{2}+\frac {1}{2}\right )^{i \sqrt {-1+i}} \left (x +i\right ) \sqrt {-1+i}\, \left (\frac {1}{2}-\frac {i x}{2}\right )^{\frac {i \sqrt {-2+2 \sqrt {2}}}{2}} \operatorname {hypergeom}\left (\left [\frac {i \sqrt {-2+2 \sqrt {2}}}{2}, \frac {i \sqrt {-1+i}}{2}+\frac {\sqrt {1+i}}{2}+1\right ], \left [i \sqrt {-1+i}+1\right ], \frac {i x}{2}+\frac {1}{2}\right )+4 \left (\frac {1}{2}-\frac {i x}{2}\right )^{\frac {\sqrt {2+2 \sqrt {2}}}{2}} \left (x +i\right ) \sqrt {-1+i}\, c_1 \left (-\frac {1}{2}+\frac {i x}{2}\right )^{i \sqrt {-1+i}} \operatorname {hypergeom}\left (\left [\frac {\sqrt {2+2 \sqrt {2}}}{2}, \frac {\sqrt {2+2 \sqrt {2}}}{2}+1\right ], \left [-i \sqrt {-1+i}+1\right ], \frac {i x}{2}+\frac {1}{2}\right )+8 \left (i x +1\right ) \left (c_1 \operatorname {HeunCPrime}\left (0, -i \sqrt {-1+i}, -1, 0, \frac {1}{2}-\frac {i}{2}, \frac {x -i}{x +i}\right ) \left (-\frac {1}{2}+\frac {i x}{2}\right )^{i \sqrt {-1+i}}-\frac {\operatorname {HeunCPrime}\left (0, i \sqrt {-1+i}, -1, 0, \frac {1}{2}-\frac {i}{2}, \frac {x -i}{x +i}\right ) \left (\frac {i x}{2}+\frac {1}{2}\right )^{i \sqrt {-1+i}}}{4}\right )}{\left (x +i\right ) \left (4 \left (\frac {1}{2}-\frac {i x}{2}\right )^{\frac {\sqrt {2+2 \sqrt {2}}}{2}} c_1 \operatorname {hypergeom}\left (\left [\frac {\sqrt {2+2 \sqrt {2}}}{2}, \frac {\sqrt {2+2 \sqrt {2}}}{2}+1\right ], \left [-i \sqrt {-1+i}+1\right ], \frac {i x}{2}+\frac {1}{2}\right ) \left (-\frac {1}{2}+\frac {i x}{2}\right )^{i \sqrt {-1+i}}-\left (\frac {1}{2}-\frac {i x}{2}\right )^{\frac {i \sqrt {-2+2 \sqrt {2}}}{2}} \operatorname {hypergeom}\left (\left [\frac {i \sqrt {-2+2 \sqrt {2}}}{2}, \frac {i \sqrt {-1+i}}{2}+\frac {\sqrt {1+i}}{2}+1\right ], \left [i \sqrt {-1+i}+1\right ], \frac {i x}{2}+\frac {1}{2}\right ) \left (\frac {i x}{2}+\frac {1}{2}\right )^{i \sqrt {-1+i}}\right )}d x +c_2
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE, diff(_b(_a),_a) = -(_b(_a)^2-_a+1)/(_a^2+1),
_b(_a)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
<- Abel AIR successful: ODE belongs to the 2F1 2-parameter class
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
2.3.22.2 ✗ Mathematica
ode=(1+x^2)*D[y[x],{x,2}]+1+(D[y[x],x])^2==x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
2.3.22.3 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x + (x**2 + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
TypeError : bad operand type for unary -: list