3.23 problem 23

3.23.1 Solving as second order ode missing y ode
3.23.2 Maple step by step solution

Internal problem ID [7213]
Internal file name [OUTPUT/6199_Sunday_June_05_2022_04_31_48_PM_39722752/index.tex]

Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\[ \boxed {\left (x^{2}+1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}=0} \]

3.23.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable \(y\). Let \begin {align*} p(x) &= y^{\prime } \end {align*}

Then \begin {align*} p'(x) &= y^{\prime \prime } \end {align*}

Hence the ode becomes \begin {align*} \left (x^{2}+1\right ) p^{\prime }\left (x \right )+x p \left (x \right )^{2} = 0 \end {align*}

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is \begin {align*} p' &= F(x,p)\\ &= f( x) g(p)\\ &= -\frac {x \,p^{2}}{x^{2}+1} \end {align*}

Where \(f(x)=-\frac {x}{x^{2}+1}\) and \(g(p)=p^{2}\). Integrating both sides gives \begin{align*} \frac {1}{p^{2}} \,dp &= -\frac {x}{x^{2}+1} \,d x \\ \int { \frac {1}{p^{2}} \,dp} &= \int {-\frac {x}{x^{2}+1} \,d x} \\ -\frac {1}{p}&=-\frac {\ln \left (x^{2}+1\right )}{2}+c_{1} \\ \end{align*} The solution is \[ -\frac {1}{p \left (x \right )}+\frac {\ln \left (x^{2}+1\right )}{2}-c_{1} = 0 \] For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is \begin {align*} -\frac {1}{y^{\prime }}+\frac {\ln \left (x^{2}+1\right )}{2}-c_{1} = 0 \end {align*}

Integrating both sides gives \begin {align*} y = \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}}d x +c_{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}}d x +c_{2} \\ \end{align*}

Verification of solutions

\[ y = \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}}d x +c_{2} \] Verified OK.

3.23.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =y^{\prime }\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) u^{\prime }\left (x \right )+x u \left (x \right )^{2}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & u^{\prime }\left (x \right )=-\frac {x u \left (x \right )^{2}}{x^{2}+1} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {u^{\prime }\left (x \right )}{u \left (x \right )^{2}}=-\frac {x}{x^{2}+1} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {u^{\prime }\left (x \right )}{u \left (x \right )^{2}}d x =\int -\frac {x}{x^{2}+1}d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (x \right )}=-\frac {\ln \left (x^{2}+1\right )}{2}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =y^{\prime } \\ {} & {} & y^{\prime }=\frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \\ {} & {} & \int y^{\prime }d x =\int \frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}}d x +c_{2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y=\int \frac {2}{\ln \left (x^{2}+1\right )-2 c_{1}}d x +c_{2} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
trying 2nd order WeierstrassP 
trying 2nd order JacobiSN 
differential order: 2; trying a linearization to 3rd order 
trying 2nd order ODE linearizable_by_differentiation 
trying 2nd order, 2 integrating factors of the form mu(x,y) 
trying differential order: 2; missing variables 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = exp_sym 
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)^2*_a/(_a^2+1), _b(_a)`   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   <- Bernoulli successful 
<- differential order: 2; canonical coordinates successful 
<- differential order 2; missing variables successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve((1+x^2)*diff(y(x),x$2)+1+x*diff(y(x),x)^2=1,y(x), singsol=all)
 

\[ y \left (x \right ) = 2 \left (\int \frac {1}{\ln \left (x^{2}+1\right )+2 c_{1}}d x \right )+c_{2} \]

Solution by Mathematica

Time used: 60.288 (sec). Leaf size: 33

DSolve[(1+x^2)*y''[x]+1+x*(y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \int _1^x-\frac {2}{2 c_1-\log \left (K[1]^2+1\right )}dK[1]+c_2 \]