2.3.23 Problem 23
Internal
problem
ID
[10155]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
23
Date
solved
:
Monday, December 08, 2025 at 07:45:16 PM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
2.3.23.1 second order ode missing y
1.544 (sec)
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2}&=1 \\
\end{align*}
Entering second order ode missing \(y\) solverThis is second order ode with missing dependent
variable \(y\). Let \begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} \left (x^{2}+1\right ) u^{\prime }\left (x \right )+x u \left (x \right )^{2} = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Entering first order ode separable solverThe ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {x u \left (x \right )^{2}}{x^{2}+1}
\end{equation}
is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {x u \left (x \right )^{2}}{x^{2}+1}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {x}{x^{2}+1}\\ g(u) &= u^{2} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {1}{u^{2}}\,du} &= \int { -\frac {x}{x^{2}+1} \,dx} \\
\end{align*}
\[
-\frac {1}{u \left (x \right )}=\ln \left (\frac {1}{\sqrt {x^{2}+1}}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(u)\) is zero, since we had to divide by this above. Solving \(g(u)=0\) or \[
u^{2}=0
\]
for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
-\frac {1}{u \left (x \right )} &= \ln \left (\frac {1}{\sqrt {x^{2}+1}}\right )+c_1 \\
u \left (x \right ) &= 0 \\
\end{align*}
Solving for \(u \left (x \right )\) gives \begin{align*}
u \left (x \right ) &= 0 \\
u \left (x \right ) &= \frac {2}{\ln \left (x^{2}+1\right )-2 c_1} \\
\end{align*}
In summary, these are the solution found
for \(y\) \begin{align*}
u \left (x \right ) &= 0 \\
u \left (x \right ) &= \frac {2}{\ln \left (x^{2}+1\right )-2 c_1} \\
\end{align*}
For solution \(u \left (x \right ) = 0\), since \(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= c_2 \\
\end{align*}
For solution \(u \left (x \right ) = \frac {2}{\ln \left (x^{2}+1\right )-2 c_1}\), since \(u=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = \frac {2}{\ln \left (x^{2}+1\right )-2 c_1} \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\frac {2}{\ln \left (x^{2}+1\right )-2 c_1}\, dx}\\ y &= \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_1}d x + c_3 \end{align*}
\begin{align*} y&= \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_1}d x +c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_1}d x +c_3 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= c_2 \\
y &= \int \frac {2}{\ln \left (x^{2}+1\right )-2 c_1}d x +c_3 \\
\end{align*}
1.555 (sec)
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2}&=1 \\
\end{align*}
Applying change of variable \(x = \arccos \left (\tau \right )\) to the above ode results in the following new ode
\[
1-\frac {\left (\tau -1\right ) \left (\tau +1\right ) \left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \left (\frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )\right )}{4}+\arccos \left (\tau \right ) \left (\frac {d}{d \tau }y \left (\tau \right )\right )^{2} \left (-\tau ^{2}+1\right )-\frac {\tau \left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \left (\frac {d}{d \tau }y \left (\tau \right )\right )}{4} = 1
\]
Which is now
solved for \(y \left (\tau \right )\). Entering second order ode missing \(y\) solverThis is second order ode with missing
dependent variable \(y \left (\tau \right )\). Let \begin{align*} u(\tau ) &= \frac {d}{d \tau }y \left (\tau \right ) \end{align*}
Then
\begin{align*} u'(\tau ) &= \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right ) \end{align*}
Hence the ode becomes
\begin{align*} -\frac {\left (\tau -1\right ) \left (\tau +1\right ) \left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \left (\frac {d}{d \tau }u \left (\tau \right )\right )}{4}+\arccos \left (\tau \right ) u \left (\tau \right )^{2} \left (-\tau ^{2}+1\right )-\frac {\tau \left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) u \left (\tau \right )}{4} = 0 \end{align*}
Which is now solved for \(u(\tau )\) as first order ode.
Entering first order ode bernoulli solver In canonical form, the ODE is
\begin{align*} u' &= F(\tau ,u)\\ &= -\frac {u \left (4 \arccos \left (\tau \right ) \tau ^{2} u +\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau -4 \arccos \left (\tau \right ) u +4 \tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4} \end{align*}
This is a Bernoulli ODE.
\[ u' = \left (-\frac {\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau }{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\right ) u \left (\tau \right ) + \left (-\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\right )u^{2} \tag {1} \]
The standard Bernoulli ODE has the form \[ u' = f_0(\tau )u+f_1(\tau )u^n \tag {2} \]
Comparing this to (1)
shows that \begin{align*} f_0 &=-\frac {\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau }{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\\ f_1 &=-\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4} \end{align*}
The first step is to divide the above equation by \(u^n \) which gives
\[ \frac {u'}{u^n} = f_0(\tau ) u^{1-n} +f_1(\tau ) \tag {3} \]
The next step is use the
substitution \(v = u^{1-n}\) in equation (3) which generates a new ODE in \(v \left (\tau \right )\) which will be linear and can be
easily solved using an integrating factor. Backsubstitution then gives the solution \(u(\tau )\) which is what
we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\begin{align*} f_0(\tau )&=-\frac {\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau }{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\\ f_1(\tau )&=-\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\\ n &=2 \end{align*}
Dividing both sides of ODE (1) by \(u^n=u^{2}\) gives
\begin{align*} u'\frac {1}{u^{2}} &= -\frac {\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau }{\left (\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4\right ) u} -\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4} \tag {4} \end{align*}
Let
\begin{align*} v &= u^{1-n} \\ &= \frac {1}{u} \tag {5} \end{align*}
Taking derivative of equation (5) w.r.t \(\tau \) gives
\begin{align*} v' &= -\frac {1}{u^{2}}u' \tag {6} \end{align*}
Substituting equations (5) and (6) into equation (4) gives
\begin{align*} -\frac {d}{d \tau }v \left (\tau \right )&= -\frac {\left (\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau \right ) v \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}-\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}\\ v' &= \frac {\left (\pi ^{2} \tau -4 \pi \arcsin \left (\tau \right ) \tau +4 \arcsin \left (\tau \right )^{2} \tau +4 \tau \right ) v}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4}+\frac {4 \arccos \left (\tau \right ) \tau ^{2}-4 \arccos \left (\tau \right )}{\pi ^{2} \tau ^{2}-\pi ^{2}-4 \arcsin \left (\tau \right ) \pi \,\tau ^{2}+4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2} \tau ^{2}-4 \arcsin \left (\tau \right )^{2}+4 \tau ^{2}-4} \tag {7} \end{align*}
The above now is a linear ODE in \(v \left (\tau \right )\) which is now solved.
In canonical form a linear first order is
\begin{align*} \frac {d}{d \tau }v \left (\tau \right ) + q(\tau )v \left (\tau \right ) &= p(\tau ) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(\tau ) &=-\frac {\tau }{\tau ^{2}-1}\\ p(\tau ) &=\frac {4 \arccos \left (\tau \right )}{\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,d\tau }}\\ &= {\mathrm e}^{\int -\frac {\tau }{\tau ^{2}-1}d \tau }\\ &= \frac {1}{\sqrt {\tau ^{2}-1}} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\tau }}\left ( \mu v\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\tau }}\left ( \mu v\right ) &= \left (\mu \right ) \left (\frac {4 \arccos \left (\tau \right )}{\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\tau }} \left (\frac {v}{\sqrt {\tau ^{2}-1}}\right ) &= \left (\frac {1}{\sqrt {\tau ^{2}-1}}\right ) \left (\frac {4 \arccos \left (\tau \right )}{\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4}\right ) \\
\mathrm {d} \left (\frac {v}{\sqrt {\tau ^{2}-1}}\right ) &= \left (\frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}\right )\, \mathrm {d} \tau \\
\end{align*}
Integrating gives \begin{align*} \frac {v}{\sqrt {\tau ^{2}-1}}&= \int {\frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}} \,d\tau } \\ &=\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau + c_1 \end{align*}
Dividing throughout by the integrating factor \(\frac {1}{\sqrt {\tau ^{2}-1}}\) gives the final solution
\[ v \left (\tau \right ) = \sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right ) \]
The substitution \(v = u^{1-n}\) is now
used to convert the above solution back to \(u \left (\tau \right )\) which results in \[
\frac {1}{u \left (\tau \right )} = \sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )
\]
Solving for \(u \left (\tau \right )\) gives \begin{align*}
u \left (\tau \right ) &= \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )} \\
\end{align*}
In summary, these
are the solution found for \(y \left (\tau \right )\) \begin{align*}
u \left (\tau \right ) &= \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )} \\
\end{align*}
For solution \(u \left (\tau \right ) = \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )}\), since \(u=\frac {d}{d \tau }y \left (\tau \right )\) then we now have a new first order ode to solve
which is \begin{align*} \frac {d}{d \tau }y \left (\tau \right ) = \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )} \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(\frac {d}{d \tau }y \left (\tau \right )=f(\tau )\), then we only need to
integrate \(f(\tau )\).
\begin{align*} \int {dy} &= \int {\frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )}\, d\tau }\\ y \left (\tau \right ) &= \int \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )}d \tau + c_2 \end{align*}
\begin{align*} y \left (\tau \right )&= \int \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )}d \tau +c_2 \end{align*}
In summary, these are the solution found for \((y \left (\tau \right ))\)
\begin{align*}
y \left (\tau \right ) &= \int \frac {1}{\sqrt {\tau ^{2}-1}\, \left (\int \frac {4 \arccos \left (\tau \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\tau \right )+4 \arcsin \left (\tau \right )^{2}+4\right ) \sqrt {\tau ^{2}-1}}d \tau +c_1 \right )}d \tau +c_2 \\
\end{align*}
Applying change of variable \(\tau = \cos \left (x \right )\) to the solutions
above gives \begin{align*}
y &= \int -\frac {\sin \left (x \right )}{\sqrt {\cos \left (x \right )^{2}-1}\, \left (\int -\frac {4 \arccos \left (\cos \left (x \right )\right ) \sin \left (x \right )}{\left (\pi ^{2}-4 \pi \arcsin \left (\cos \left (x \right )\right )+4 \arcsin \left (\cos \left (x \right )\right )^{2}+4\right ) \sqrt {\cos \left (x \right )^{2}-1}}d x +c_1 \right )}d x +c_2 \\
\end{align*}
2.3.23.3 ✓ Maple. Time used: 0.010 (sec). Leaf size: 22
ode:=(x^2+1)*diff(diff(y(x),x),x)+1+x*diff(y(x),x)^2 = 1;
dsolve(ode,y(x), singsol=all);
\[
y = 2 \int \frac {1}{\ln \left (x^{2}+1\right )+2 c_1}d x +c_2
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE, diff(_b(_a),_a) = -_b(_a)^2*_a/(_a^2+1), _b(_a
)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+1+x \left (\frac {d}{d x}y \left (x \right )\right )^{2}=1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & \left (x^{2}+1\right ) \left (\frac {d}{d x}u \left (x \right )\right )+1+x u \left (x \right )^{2}=1 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}u \left (x \right )=-\frac {x u \left (x \right )^{2}}{x^{2}+1} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}=-\frac {x}{x^{2}+1} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}u \left (x \right )}{u \left (x \right )^{2}}d x =\int -\frac {x}{x^{2}+1}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (x \right )}=-\frac {\ln \left (x^{2}+1\right )}{2}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )-2 \mathit {C1}} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )+\mathit {C1}} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (x \right ) \\ {} & {} & u \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )+\mathit {C1}} \\ \bullet & {} & \textrm {Make substitution}\hspace {3pt} u =\frac {d}{d x}y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {2}{\ln \left (x^{2}+1\right )+\mathit {C1}} \\ \bullet & {} & \textrm {Integrate both sides to solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \frac {2}{\ln \left (x^{2}+1\right )+\mathit {C1}}d x +\mathit {C2} \\ \bullet & {} & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y \left (x \right )=\int \frac {2}{\ln \left (x^{2}+1\right )+\mathit {C1}}d x +\mathit {C2} \end {array} \]
2.3.23.4 ✓ Mathematica. Time used: 60.084 (sec). Leaf size: 33
ode=(1+x^2)*D[y[x],{x,2}]+1+x*(D[y[x],x])^2==1;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \int _1^x-\frac {2}{2 c_1-\log \left (K[1]^2+1\right )}dK[1]+c_2 \end{align*}
2.3.23.5 ✓ Sympy. Time used: 1.780 (sec). Leaf size: 34
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x*Derivative(y(x), x)**2 + (x**2 + 1)*Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = C_{1} - 2 \int \frac {1}{C_{2} - \log {\left (x^{2} + 1 \right )}}\, dx, \ y{\left (x \right )} = C_{1} - 2 \int \frac {1}{C_{2} - \log {\left (x^{2} + 1 \right )}}\, dx\right ]
\]