2.4.63 Problem 60
Internal
problem
ID
[10226]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
60
Date
solved
:
Thursday, January 29, 2026 at 05:58:00 PM
CAS
classification
:
[_quadrature]
2.4.63.1 Solved using first_order_ode_autonomous
0.291 (sec)
Entering first order ode autonomous solver
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*}
Integrating gives \begin{align*} \int \frac {1}{y \left (-y^{2}+1\right )}d y &= dx\\ -\frac {\ln \left (y +1\right )}{2}-\frac {\ln \left (y -1\right )}{2}+\ln \left (y \right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} y \left (-y^{2}+1\right )&= 0 \end{align*}
for \(y\) . This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} y = -1\\ y = 0 \end{align*}
The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.
Solving for \(y\) gives
\begin{align*}
y &= -1 \\
y &= 0 \\
y &= \frac {\sqrt {\left (-1+{\mathrm e}^{2 x +2 c_1}\right ) {\mathrm e}^{2 x +2 c_1}}}{-1+{\mathrm e}^{2 x +2 c_1}} \\
y &= -\frac {\sqrt {\left (-1+{\mathrm e}^{2 x +2 c_1}\right ) {\mathrm e}^{2 x +2 c_1}}}{-1+{\mathrm e}^{2 x +2 c_1}} \\
\end{align*}
Direction field \(y^{\prime } = y \left (1-y^{2}\right )\) Isoclines for \(y^{\prime } = y \left (1-y^{2}\right )\)
Summary of solutions found
\begin{align*}
y &= -1 \\
y &= 0 \\
y &= \frac {\sqrt {\left (-1+{\mathrm e}^{2 x +2 c_1}\right ) {\mathrm e}^{2 x +2 c_1}}}{-1+{\mathrm e}^{2 x +2 c_1}} \\
y &= -\frac {\sqrt {\left (-1+{\mathrm e}^{2 x +2 c_1}\right ) {\mathrm e}^{2 x +2 c_1}}}{-1+{\mathrm e}^{2 x +2 c_1}} \\
\end{align*}
2.4.63.2 Solved using first_order_ode_bernoulli
0.329 (sec)
Entering first order ode bernoulli solver
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*}
In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= y \left (-y^{2}+1\right ) \end{align*}
This is a Bernoulli ODE.
\[ y' = \left (1\right ) y + \left (-1\right )y^{3} \tag {1} \]
The standard Bernoulli ODE has the form \[ y' = f_0(x)y+f_1(x)y^n \tag {2} \]
Comparing this to (1)
shows that \begin{align*} f_0 &=1\\ f_1 &=-1 \end{align*}
The first step is to divide the above equation by \(y^n \) which gives
\[ \frac {y'}{y^n} = f_0(x) y^{1-n} +f_1(x) \tag {3} \]
The next step is use the
substitution \(v = y^{1-n}\) in equation (3) which generates a new ODE in \(v \left (x \right )\) which will be linear and can be
easily solved using an integrating factor. Backsubstitution then gives the solution \(y(x)\) which is what
we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\begin{align*} f_0(x)&=1\\ f_1(x)&=-1\\ n &=3 \end{align*}
Dividing both sides of ODE (1) by \(y^n=y^{3}\) gives
\begin{align*} y'\frac {1}{y^{3}} &= \frac {1}{y^{2}} -1 \tag {4} \end{align*}
Let
\begin{align*} v &= y^{1-n} \\ &= \frac {1}{y^{2}} \tag {5} \end{align*}
Taking derivative of equation (5) w.r.t \(x\) gives
\begin{align*} v' &= -\frac {2}{y^{3}}y' \tag {6} \end{align*}
Substituting equations (5) and (6) into equation (4) gives
\begin{align*} -\frac {v^{\prime }\left (x \right )}{2}&= v \left (x \right )-1\\ v' &= -2 v +2 \tag {7} \end{align*}
The above now is a linear ODE in \(v \left (x \right )\) which is now solved.
Integrating gives
\begin{align*} \int \frac {1}{-2 v +2}d v &= dx\\ -\frac {\ln \left (-v +1\right )}{2}&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} -2 v +2&= 0 \end{align*}
for \(v \left (x \right )\) . This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} v \left (x \right ) = 1 \end{align*}
The substitution \(v = y^{1-n}\) is now used to convert the above solution back to \(y\) which results in
\[
-\frac {\ln \left (-\frac {1}{y^{2}}+1\right )}{2} = x +c_1
\]
\[
\frac {1}{y^{2}} = 1
\]
Solving for \(y\)
gives \begin{align*}
y &= -1 \\
y &= 1 \\
y &= \frac {1}{\sqrt {1-{\mathrm e}^{-2 x -2 c_1}}} \\
y &= -\frac {1}{\sqrt {1-{\mathrm e}^{-2 x -2 c_1}}} \\
\end{align*}
Direction field \(y^{\prime } = y \left (1-y^{2}\right )\) Isoclines for \(y^{\prime } = y \left (1-y^{2}\right )\)
Summary of solutions found
\begin{align*}
y &= -1 \\
y &= 1 \\
y &= \frac {1}{\sqrt {1-{\mathrm e}^{-2 x -2 c_1}}} \\
y &= -\frac {1}{\sqrt {1-{\mathrm e}^{-2 x -2 c_1}}} \\
\end{align*}
2.4.63.3 Solved using first_order_ode_exact
0.398 (sec)
Entering first order ode exact solver
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*}
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives \[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence \begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that \begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is \[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore \begin{align*} \mathop {\mathrm {d}y} &= \left (y \left (-y^{2}+1\right )\right )\mathop {\mathrm {d}x}\\ \left (-y \left (-y^{2}+1\right )\right ) \mathop {\mathrm {d}x} + \mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,y) &= -y \left (-y^{2}+1\right )\\ N(x,y) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives \begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (-y \left (-y^{2}+1\right )\right )\\ &= 3 y^{2}-1 \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial y} \neq \frac {\partial N}{\partial x}\) , then the ODE is not exact . Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial y} - \frac {\partial N}{\partial x} \right ) \\ &=1\left ( \left ( 3 y^{2}-1\right ) - \left (0 \right ) \right ) \\ &=3 y^{2}-1 \end{align*}
Since \(A\) depends on \(y\) , it can not be used to obtain an integrating factor. We will now try a second
method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial x} - \frac {\partial M}{\partial y} \right ) \\ &=\frac {1}{y^{3}-y}\left ( \left ( 0\right ) - \left (3 y^{2}-1 \right ) \right ) \\ &=\frac {-3 y^{2}+1}{y^{3}-y} \end{align*}
Since \(B\) does not depend on \(x\) , it can be used to obtain an integrating factor. Let the integrating
factor be \(\mu \) . Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}y}} \\ &= e^{\int \frac {-3 y^{2}+1}{y^{3}-y}\mathop {\mathrm {d}y} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{-\ln \left (y \left (y^{2}-1\right )\right ) } \\ &= \frac {1}{y^{3}-y} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so
not to confuse them with the original \(M\) and \(N\) .
\begin{align*} \overline {M} &=\mu M \\ &= \frac {1}{y^{3}-y}\left (-y \left (-y^{2}+1\right )\right ) \\ &= 1 \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= \frac {1}{y^{3}-y}\left (1\right ) \\ &= \frac {1}{y^{3}-y} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be solved
using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \\ \left (1\right ) + \left (\frac {1}{y^{3}-y}\right ) \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial y } &= \overline {N}\tag {2} \end{align*}
Integrating (1) w.r.t. \(x\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int \overline {M}\mathop {\mathrm {d}x} \\
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int 1\mathop {\mathrm {d}x} \\
\tag{3} \phi &= x+ f(y) \\
\end{align*}
Where \(f(y)\) is used for the constant of integration since \(\phi \) is a function of
both \(x\) and \(y\) . Taking derivative of equation (3) w.r.t \(y\) gives \begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y)
\end{equation}
But equation (2) says that \(\frac {\partial \phi }{\partial y} = \frac {1}{y^{3}-y}\) . Therefore
equation (4) becomes \begin{equation}
\tag{5} \frac {1}{y^{3}-y} = 0+f'(y)
\end{equation}
Solving equation (5) for \( f'(y)\) gives \begin{align*}
f'(y) &= \frac {1}{y \left (y^{2}-1\right )} \\
&= \frac {1}{y^{3}-y}\\
\end{align*}
Integrating the above w.r.t \(y\)
results in \begin{align*}
\int f'(y) \mathop {\mathrm {d}y} &= \int \left ( \frac {1}{y^{3}-y}\right ) \mathop {\mathrm {d}y} \\
f(y) &= \frac {\ln \left (y +1\right )}{2}+\frac {\ln \left (y -1\right )}{2}-\ln \left (y \right )+ c_1 \\
\end{align*}
\[
\phi = x +\frac {\ln \left (y +1\right )}{2}+\frac {\ln \left (y -1\right )}{2}-\ln \left (y \right )+ c_1
\]
But since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and
combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives the solution as \[
c_1 = x +\frac {\ln \left (y +1\right )}{2}+\frac {\ln \left (y -1\right )}{2}-\ln \left (y \right )
\]
Solving for \(y\) gives \begin{align*}
y &= \frac {1}{\sqrt {1-{\mathrm e}^{-2 x +2 c_1}}} \\
y &= -\frac {1}{\sqrt {1-{\mathrm e}^{-2 x +2 c_1}}} \\
\end{align*}
Direction field \(y^{\prime } = y \left (1-y^{2}\right )\) Isoclines for \(y^{\prime } = y \left (1-y^{2}\right )\)
Summary of solutions found
\begin{align*}
y &= \frac {1}{\sqrt {1-{\mathrm e}^{-2 x +2 c_1}}} \\
y &= -\frac {1}{\sqrt {1-{\mathrm e}^{-2 x +2 c_1}}} \\
\end{align*}
2.4.63.4 ✓ Maple. Time used: 0.003 (sec). Leaf size: 29
ode := diff ( y ( x ), x ) = y(x)*(1-y(x)^2);
dsolve ( ode , y ( x ), singsol=all);
\begin{align*}
y &= \frac {1}{\sqrt {{\mathrm e}^{-2 x} c_1 +1}} \\
y &= -\frac {1}{\sqrt {{\mathrm e}^{-2 x} c_1 +1}} \\
\end{align*}
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=y \left (x \right ) \left (1-y \left (x \right )^{2}\right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=y \left (x \right ) \left (1-y \left (x \right )^{2}\right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right ) \left (1-y \left (x \right )^{2}\right )}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right ) \left (1-y \left (x \right )^{2}\right )}d x =\int 1d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {\ln \left (y \left (x \right )-1\right )}{2}-\frac {\ln \left (y \left (x \right )+1\right )}{2}+\ln \left (y \left (x \right )\right )=x +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & \left \{y \left (x \right )=\frac {\sqrt {\left ({\mathrm e}^{2 x +2 \mathit {C1}}-1\right ) {\mathrm e}^{2 x +2 \mathit {C1}}}}{{\mathrm e}^{2 x +2 \mathit {C1}}-1}, y \left (x \right )=-\frac {\sqrt {\left ({\mathrm e}^{2 x +2 \mathit {C1}}-1\right ) {\mathrm e}^{2 x +2 \mathit {C1}}}}{{\mathrm e}^{2 x +2 \mathit {C1}}-1}\right \} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \left \{y \left (x \right )=\frac {\sqrt {\left ({\mathrm e}^{2 x +2 \mathit {C1}}-1\right ) {\mathrm e}^{2 x +2 \mathit {C1}}}}{{\mathrm e}^{2 x +2 \mathit {C1}}-1}, y \left (x \right )=\frac {\sqrt {2}\, \sqrt {\sinh \left (x +\mathit {C1} \right ) {\mathrm e}^{3 x +3 \mathit {C1}}}}{-{\mathrm e}^{2 x +2 \mathit {C1}}+1}\right \} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & \left \{y \left (x \right )=\frac {\sqrt {\left (\mathit {C1} \,{\mathrm e}^{2 x}-1\right ) \mathit {C1} \,{\mathrm e}^{2 x}}}{\mathit {C1} \,{\mathrm e}^{2 x}-1}, y \left (x \right )=\frac {\sqrt {2}\, \sqrt {\sinh \left (x +\mathit {C1} \right ) {\mathrm e}^{3 x +3 \mathit {C1}}}}{-{\mathrm e}^{2 x +2 \mathit {C1}}+1}\right \} \end {array} \]
2.4.63.5 ✓ Mathematica. Time used: 0.121 (sec). Leaf size: 53
ode = D [ y [ x ], x ]== y [ x ]*(1- y [ x ]^2);
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) K[1] (K[1]+1)}dK[1]\&\right ][-x+c_1]\\ y(x)&\to -1\\ y(x)&\to 0\\ y(x)&\to 1 \end{align*}
2.4.63.6 ✓ Sympy. Time used: 0.779 (sec). Leaf size: 39
from sympy import *
x = symbols( " x " )
y = Function( " y " )
ode = Eq((y(x)**2 - 1)*y(x) + Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
\left [ y{\left (x \right )} = - \sqrt {- \frac {e^{2 x}}{C_{1} - e^{2 x}}}, \ y{\left (x \right )} = \sqrt {- \frac {e^{2 x}}{C_{1} - e^{2 x}}}\right ]
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode ( ode , func = y ( x ))
( ' factorable ' , ' separable ' , ' 1st_exact ' , ' Bernoulli ' , ' 1st_power_series ' , ' lie_group ' , ' separable_Integral ' , ' 1st_exact_Integral ' , ' Bernoulli_Integral ' )