Internal
problem
ID
[7933]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
61
Date
solved
:
Tuesday, October 22, 2024 at 03:00:10 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
4.64.3 Maple dsolve solution
Solving time : 0.019
(sec)
Leaf size : 155
dsolve(x/(1-x)*diff(diff(y(x),x),x)+y(x) = 1/(1-x),
y(x),singsol=all)
\[
y = -\left (\left (\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )\right ) \left (\int \frac {-\operatorname {BesselK}\left (0, -x \right )+\operatorname {BesselK}\left (1, -x \right )}{\operatorname {BesselK}\left (1, -x \right ) \operatorname {BesselI}\left (0, x\right ) x^{2}-\operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right ) x^{2}+x +1}d x \right )+\left (\int \frac {\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )}{\operatorname {BesselK}\left (1, -x \right ) \operatorname {BesselI}\left (0, x\right ) x^{2}-\operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right ) x^{2}+x +1}d x \right ) \left (\operatorname {BesselK}\left (0, -x \right )-\operatorname {BesselK}\left (1, -x \right )\right )+c_1 \operatorname {BesselK}\left (0, -x \right )-c_1 \operatorname {BesselK}\left (1, -x \right )-c_2 \operatorname {BesselI}\left (0, -x \right )-c_2 \operatorname {BesselI}\left (1, -x \right )\right ) x
\]
4.64.4 Mathematica DSolve solution
Solving time : 0.248
(sec)
Leaf size : 136
DSolve[{x/(1-x)*D[y[x],{x,2}]+y[x]==1/(1-x),{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to e^{-x} x \left (e^x (\operatorname {BesselI}(0,x)-\operatorname {BesselI}(1,x)) \int _1^x2 e^{-K[1]} \sqrt {\pi } \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 K[1]\right )dK[1]-2 \sqrt {\pi } x \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right ) \, _1F_2\left (\frac {1}{2};1,\frac {3}{2};\frac {x^2}{4}\right )+2 \sqrt {\pi } \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right ) \operatorname {BesselI}(0,x)+c_1 \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right )+c_2 e^x \operatorname {BesselI}(0,x)-c_2 e^x \operatorname {BesselI}(1,x)\right )
\]