2.1.58 problem 58
Internal
problem
ID
[8446]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
58
Date
solved
:
Tuesday, December 17, 2024 at 12:51:38 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
Solve
\begin{align*} y^{\prime }&=-4 \sin \left (-y+x \right )-4 \end{align*}
Time used: 0.175 (sec)
The given ode has the general form
\begin{align*} y^{\prime } & = B+C f\left ( ax +b y +c\right ) \tag {1} \end{align*}
Comparing (1) to the ode given shows the parameters in the ODE have these values
\begin{align*} B &= -4\\ C &= -4\\ a &= 1\\ b &= -1\\ c &= 0 \end{align*}
This form of ode can be solved by change of variables \(u=ax+b y +c\) which makes the ode separable.
\begin{align*} u^{\prime }\left (x \right ) &=a+b y^{\prime } \end{align*}
Or
\begin{align*} y^{\prime } &= \frac { u^{\prime }\left (x \right ) - a} {b} \end{align*}
The ode becomes
\begin{align*} \frac {u' - a}{b} & = B+C f\left ( u\right ) \\ u' & =b B+ b C f\left ( u\right ) +a \\ \frac {du}{b B+b C f\left ( u\right ) +a} &= d x \end{align*}
Integrating gives
\begin{align*} \int \frac {du}{b B+ b C f(u) +a} &=x+c_1\\ \int ^{u}\frac {d\tau }{b B + b C f(\tau ) +a} & = x+c_1 \end{align*}
Replacing back \(u=ax+b y +c\) the above becomes
\begin{equation} \int ^{ax+b y +c}\frac {d\tau }{b B+b C f\left ( \tau \right ) +a} = x+c_{1}\tag {2} \end{equation}
If initial conditions are given as \(y\left ( x_{0}\right ) = y_{0}\) , the above becomes
\begin{align*} \int _{0}^{a x_{0}+b y_{0}+c}\frac {d\tau }{b B + b C f\left ( \tau \right ) +a} & =x_{0}+c_{1}\\ c_{1} & =\int _{0}^{ax+by_{0}+c}\frac {d\tau }{b B+ b C f\left ( \tau \right )+a}-x_{0} \end{align*}
Substituting this into (2) gives
\begin{align*} \int ^{ax+by+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}= x+\int _{0}^{ax+by_{0}+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}-x_{0} \tag {3} \end{align*}
Since no initial conditions are given, then using (2) and replacing the values of the
parameters into (2) gives the solution as
\[
\int _{}^{-y+x}\frac {1}{5+4 \sin \left (\tau \right )}d \tau = x +c_1
\]
Which simplifies to
\[
\frac {2 \arctan \left (\frac {5 \tan \left (-\frac {y}{2}+\frac {x}{2}\right )}{3}+\frac {4}{3}\right )}{3} = x +c_1
\]
Solving for \(y\) gives
\begin{align*}
y &= x -2 \arctan \left (\frac {3 \tan \left (\frac {3 x}{2}+\frac {3 c_1}{2}\right )}{5}-\frac {4}{5}\right ) \\
\end{align*}
Figure 2.140: Slope field plot
\(y^{\prime } = -4 \sin \left (-y+x \right )-4\)
Summary of solutions found
\begin{align*}
y &= x -2 \arctan \left (\frac {3 \tan \left (\frac {3 x}{2}+\frac {3 c_1}{2}\right )}{5}-\frac {4}{5}\right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-4 \sin \left (x -y \left (x \right )\right )-4 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-4 \sin \left (x -y \left (x \right )\right )-4 \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1 st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful `
Maple dsolve solution
Solving time : 0.048
(sec)
Leaf size : 21
dsolve ( diff ( y ( x ), x ) = -4* sin ( x - y ( x ))-4,
y(x),singsol=all)
\[
y = x +2 \arctan \left (\frac {3 \tan \left (-\frac {3 x}{2}+\frac {3 c_{1}}{2}\right )}{5}+\frac {4}{5}\right )
\]
Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve [{ D [ y [ x ], x ]==4* Sin [ y [ x ]- x ]-4,{}},
y[x],x,IncludeSingularSolutions-> True ]
Timed out